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Abstract—The existence of missing data is a common fact in
real applications which can significantly affect the data analysis
process. In order to overcome this problem, many methods have
been proposed in the literature. Extreme Learning Machine
(ELM) has become a very popular research topic in machine
learning and artificial intelligence areas due to its characteristics
such as fast training procedure, good generalization and universal
approximation capability. Although ELM has been successfully
applied in different domains, its basic formulation cannot handle
datasets with missing values properly. This paper presents a
variant of the Extreme Learning Machine (ELM) for datasets
with missing values. In the proposed method, probability distri-
butions for the missing values are estimated using the expectation
maximization (EM) algorithm, assuming that data is normally
distributed. The Unscented Transform (UT) is used to estimate
the values of the hidden layer outputs, and the weights of the
output layer are assigned using the Moore-Penrose Pseudoinverse.
Numerical experiments are carried out in order to evaluate the
performance of the proposed method in four real world and two
synthetic regression datasets. The results show that the proposed
method presented a good performance in terms of Average Root-
Mean-Squared Error (ARMSE).

Keywords—Extreme Learning Machines, Unscented Transform,
Missing Values.

I. INTRODUCTION

Missing data is a common fact that can have significant
effect in data analysis. The missing data phenomenon can be
defined as the absence of some entries in feature vectors caused
by factors such as measurement error, device malfunction and
operator failure, among others [1]. According to Little and
Rubin in [2] the missingness mechanism can be classified as
Missing Completely at Random (MCAR), Missing at Random
(MAR) and Not Missing at Random (NMAR). When data
is MCAR, the probability of an instance having a missing
value for an attribute does not depend on either the observed
data or the value of missing attribute itself. If data is MAR,
the probability of an instance having a missing value for an
attribute may depend on the known values, but not on the
actual value of the missing entry. In NMAR, the probability
of an instance having a missing value for an attribute may
depend on the value of that attribute [3]. In this paper, we
assume that the missing values are MAR.

Since the pioneering work of Rubin [4], many strategies
have been proposed to handle the missing data problem.

The existing approaches can be roughly classified in three
groups: deletion of incomplete cases, imputation methods and
reformulation of data analysis/machine learning methods.

Deletion of incomplete cases is the simplest strategy and
probably the most used. In such approach, instances in which
any attribute is missing are not considered on the training
set. This approach is formally referred as listwise deletion.
Although very popular, listwise deletion may severely impact
the final result when the number of instances with missing
data is significant [5]. The imputation approach consists of
filling the missing values using information extracted from the
observed values in the same attribute vector and the whole
dataset. Imputation methods can be divided into single and
multiple imputation. While single imputation methods aim
to fill the missing values with a single value, in multiple
imputation, multiple versions of the dataset are generated
by imputing missing values in different ways and a model
is generated for each dataset version. The final model is a
combination of the individual models. As can be inferred,
single imputation methods are simpler and often require less
computational effort. Multiple imputation, on the other hand,
is a more computationally demanding process but addresses
the inherent uncertainty in the process of estimating a missing
value. As a consequence, multiple imputation often presents
better results.

The last approach consists in adapting well known methods
so that missing data can be handle in its formulation without
any explicit imputation. Examples of such approach can be
found for Support Vector Machines [6], Minimal Learning
Machines [7] and K-nearest neighbors [8], among others.
According to [7], this approach is preferred since it handles
the uncertainty of the estimation process while keeping the
computational cost on the same level as single imputation. It
is worth pointing that in most of these methods it is necessary
to estimate the distribution of the dataset using any parametric
or nonparametric model. The model parameters are estimated
using any method that is robust to the presence of missing
values. Usual choices include the use of the Expectation-
Maximization (EM) algorithm for datasets with missing values
to estimate the parameters of Gaussian [9] and Mixture of
Gaussian distributions [10].

Extreme Learning Machine (ELM, [11]) is a single layer
neural network that has attracted much attention due to its



performance in many tasks and the fast training procedure
[12]. In ELM, the weights of the hidden layer are assigned
randomly and the output layer weights are estimated using the
Moore-Penrose pseudoinverse. Despite its successful applica-
tion in many domains, the basic formulation of ELM cannot
handle datasets with missing values appropriately. Existing
approaches include single [13] and multiple imputation [1]
algorithms. However, no modified version of ELM to handle
missing values is available.

In this paper, we propose a variant of the ELM for datasets
with missing values. In the proposed method, probability
distributions for the missing values are estimated using the
EM algorithm, assuming that data is normally distributed.
After that, the expected values of the hidden layer outputs are
estimated using the Unscented Transform (UT, [14]). Finally,
the output layer weights are assigned using the Moore-Penrose
Pseudoinverse. The performance of the proposed method is
assessed in experiments with four real world and two synthetic
regression datasets.

The remaining sections of this paper are organized as
follows. Section II presents a brief overview of ELM and
Unscented Transform. Section III introduces the proposed
method. Section IV shows the results obtained in the numerical
experiments. Concluding remarks are presented in Section V.

II. THEORETICAL BACKGROUND

A. Extreme Learning Machines

In recent years, Extreme Learning Machine (ELM) has
become a popular research topic in machine learning and
artificial intelligence areas due to its characteristics such as
fast training, good generalization and universal approximation
capability [15].

ELM was firstly introduced by [11]. It is a learning
algorithm for single hidden layer feedforward neural networks
(SLFNs) in which the hidden node parameters are randomly
generated and the output weights are analytically computed
[16]. Many works have been published recently showing
the use of ELMs with good performance in a wide range
of applications such as image segmentation [17] and face
recognition [18], among others.

Let D = {X ,Y} be the training dataset, such that X =
{xi}Ni=1 is the set of p-dimensional training inputs and Y =
{yi}Ni=1 is the set of their respective q-dimensional outputs.
Consider a SLFN with M neurons in the hidden layer and
activation function φ(·). The output of the SLFN for data xi,
denoted by si, can be expressed according to (1).

si =

M∑
i=1

βiφ (wi · xi + ci) (1)

where wi is the weight vector connecting the input layer and
the i-th hidden neuron, βi is the weight vector connecting the
i-th hidden neuron and output layer and ci is the threshold of
the i-th hidden neuron [19].

It is possible to express (1) using a matrix notation Hβ,
where H is the hidden layer output matrix [19]. Each element

hij of matrix H , with 1 ≤ i ≤ N and 1 ≤ j ≤M is defined
by (2).

hij = φ (wj · xi + cj) (2)

Then, the weights of the hidden layer can be obtained
by applying the method of least squares in order to find an
approximated solution for the linear system Hβ = Y , in which
each row of Y corresponds to yi. This approximated solution
can be obtained through (3).

β̂ =
(
HTH

)−1
HTY (3)

In this paper, we use the sigmoid function presented in (4)
as the activation function of the neurons in the hidden layer.

φ(x) =
1

1 + e−x
(4)

B. Unscented Transform

The Unscented Transform (UT), originally proposed in
[20], is a method for estimating statistical moments of a
probability distribution associated to a random variable which
results from a nonlinear transformation of another random
variable [21].

Let x be a d-dimensional random variable and φ(·) be an
arbitrary nonlinear function. Let h = φ(x) be the transformed
random variable, which is obtained by the transformation of x
through φ(·).

In order to approximate h using the UT method, a set
S = {γl}Ll=1 of sigma points (SPs), with respective weights
{kl}Ll=1, associated to the original random variable x are de-
terministically chosen. Then, the SPs are transformed through
φ(·), resulting in a transformed set of SPs. Finally, the trans-
formed SPs (and their corresponding weights) are used in order
to approximate the statistical moments of h.

The weights kl, with 1 ≤ l ≤ L, can be positive or
negative. However, they must obey the condition in (5) in order
to provide an unbiased estimate [14].

L∑
l=1

kl = 1 (5)

The implementation of the UT is based on the expressions
presented in equations (6) to (8).

δl =φ (γl) ∀ 1 ≤ l ≤ L (6)

h̄ =

L∑
l=1

klδl (7)

Σh=

L∑
l=1

kl
(
δl − h̄

) (
δi − h̄

)T
(8)

where h̄ and Σh are the estimated mean and covariance matrix
of h, respectively; γl and δl are the SPs associated to x and h,



respectively; kl is the weight of γl. Note that a SP may have
different weights in the approximation of h̄ and Σh.

There are different ways to choose the SPs. A common
approach is to use a symmetric set of L = 2d+ 1 SPs, chosen
according to Equations (9) to (12).

γ1=x̄ (9)

γl=x̄+
[√

dΣh

]
l−1

∀ 1 < l ≤ d+ 1 (10)

γl=x̄−
[√

dΣh

]
l−(d+1)

∀ d+ 1 < l ≤ 2d+ 1 (11)

kl=
1

2d+ 1
∀ 1 ≤ l ≤ 2d+ 1 (12)

where
[√
dΣh

]
l

denotes the i-th row of the matrix square root
of dΣh, which is the original covariance matrix Σh multiplied
by the number of dimensions d.

III. PROPOSED METHOD

In order to proceed with the computation of (3) in the
presence of missing data, we propose taking the expected value
of each entry of H . If xi ∈ X is fully observed, each hij can
be directly computed using (2). We are left with the more
interesting case, in which xi is missing one or more entries.
Let M denote the indices of xi which contain missing values
and O denote the observed ones. Suppose each element in X
was drawn from a same multivariate normal distribution with
mean vector µ and covariance matrix Σ. It follows from this
assumption that:

xiM ∼ N (µ∗,Σ∗) (13)

in which µ∗ and Σ∗ are the conditional mean vector and
covariance matrix with respect to the observed entries xiO of
xi, given by (14) and (15), respectively.

µ∗ = µM + ΣMOΣ−1OO(xiO − µO) (14)
Σ∗ = ΣMM − ΣMOΣ−1OOΣOM (15)

Therefore, hij is a nonlinear transform of xiM , for which
we wish to compute its expectation E[hij ], given by

E[hij ] =

∫
R|M|

φ(wjM · x+ ζ)N (x|µ∗,Σ∗)dx (16)

where ζ = wjO · xiO and N (x|µ∗,Σ∗) denotes the value of
the multivariate normal pdf defined by the mean vector µ∗ and
covariance matrix Σ∗ evaluated at x. Since φ is the sigmoid
function, eq. (16) resumes to

E[hij ] =

∫
R|M|

1

1 + e−(wjM ·x+ζ)
N (x|µ∗,Σ∗)dx (17)

which is intractable. The problem of estimating the distribution
(or its statistical moments) of a random variable resulting
from a nonlinear transformation of another random variable

can be addressed by either a Monte Carlo approach or some
approximations. In a Monte Carlo estimation procedure, sam-
ples of the original distribution would be transformed by the
nonlinear function and the transformed variables could be
used to estimate the distribution itself or its moments. As a
consequence of the sampling procedure, this approach results
on an increase in the computational cost that could even reach
a cost similar to multiple imputation.

Considering the approximations, two strategies are most
commonly used: analytical and statistical linearization. Analyt-
ical linearization methods may use expansions like Taylor ex-
pansion to approximate the nonlinear function as a set of linear
components. On the other hand, statistical linearization proce-
dures aim to approximate several moments of the distribution
using the nonlinear transform and a set of previously defined
sampled sigma points [22]. It has been reported that statis-
tical linearization methods outperform analytical linearization
methods [23]. In this paper, the Unscented Transform is used
as the statistical linearization method.

Once the sigma points have been sampled, the expected
value of the variables of interest (its first noncentral moment)
can be approximated by:

E[hij ] ≈
L∑
l=1

klφ(wj · γl + ζ) (18)

The proposed method is outlined in Algorithm 1 and is
hereinafter referred to as U-ELM.

Algorithm 1 Unscented ELM

1: procedure U-ELM(D = {X ,Y})
2: Estimate µ,Σ from X using Expectation Maximization
3: for i = 1 . . . N do
4: Let M be the set of unknown indices in xi
5: Let O be the set of observed indices in xi
6: for j = 1 . . .M do
7: if M 6= ∅ then
8: µ∗ ← µM + ΣMOΣ−1OO(xiO − µO)
9: Σ∗ ← ΣMM − ΣMOΣ−1OOΣOM

10: ζ ← wjO · xiO
11: L← 2|M |+ 1
12: k1...L ← L−1

13: γ1 ← µ∗
14: for l = 2 . . . (|M |+ 1) do
15: γl ← γ1 +

[√
|M |Σ∗

]
l−1

16: end for
17: for l = (|M |+ 2) . . . L do
18: γl ← γ1 −

[√
|M |Σ∗

]
l−(|M |+1)

19: end for
20: hij ←

∑L
l=1 klφ(wj · γl + ζ)

21: else
22: hij ← φ(wj · xi + cj)
23: end if
24: end for
25: end for
26: β̂ ←

(
HTH

)−1
HTY

27: end procedure



IV. NUMERICAL EXPERIMENTS

The most common techniques to deal with missing data
in regression problems consist on either dropping the exam-
ples counting on missing entries or to directly impute the
conditional mean of the missing entries (CMI), which can
be estimated using EM. To evaluate the performance of the
proposed method, we compare it with conventional ELMs
trained on datasets treated with these techniques.

To carry out the experiments, four real world and two syn-
thetic regression datasets were used. The real-world datasets
were all obtained from the UCI machine learning repository
[24]. The synthetic datasets were generated from the 3D Sinc
Function and the Smoothed Parity Function, given by (19) and
(20) and illustrated in Figures 1 and 2, respectively. Further
details about each dataset are presented in table I.

fSinc(x, y)=
sin(

√
x2 + y2)√

x2 + y2
(19)

fxor(x, y) =sin(2πx)sin(2πy) (20)
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Fig. 2: Smoothed Parity Function

TABLE I: Datasets characteristics

Dataset #attributes #Train #Test
Bank 8 2999 1500
Boston Stocks 9 633 317
Boston Housing 13 337 169
Concrete Compression 8 686 344
Smoothed Parity Function 2 294 127
3D Sinc Function 2 704 352

To access the impact of the number of missing values in
the proposed method, we gradually increase the number of
examples with missing attributes in each dataset. Experiments
consisted on 10 similar rounds of experiments. In each of these
rounds, the training and test samples were drawn randomly
without replacement from the original data sets. The artificial
missing values are generated in a manner to guarantee that
data is MAR. Each ELM was trained usingM = 100 neurons
in its hidden layers. All implementations were executed using
MATLAB. The results are presented in terms of Average Root-
Mean-Squared Error (ARMSE) in Figure 3.

As expected, the listwise deletion has the worst perfor-
mance in most datasets. This fact is more noticeable when the
number of missing values is increased. The U-ELM had the
best overall performance, achieving the lowest ARMSE values
in all datasets for all rates of training examples containing
missing values.

The performance gap between CMI and U-ELM can be
explained by observing the formulation of each regression
model. Using the CMI results in an ELM model that can be
described by:

si =

M∑
i=1

βiφ (wi · E[xi] + ci) (21)

where E[xi] is a vector composed by the observed values of xi
and the expected values of the missing attributes conditioned
to the observed ones estimated with the CMI.

It can be noticed that, in the CMI, the ELM (with its
nonlinear transforms) is applied to a dataset where the missing
values are filled with its expected values. On the other hand,
the U-ELM estimates the expected value of the whole ELM
network, not only the input vectors xi. Considering (1), (2)
and (18), it is possible to describe the U-ELM as:

si =

M∑
i=1

βiE[φ (wi · xi + ci)] (22)

which leads to:

si = E

[ M∑
i=1

βiφ (wi · xi + ci)

]
(23)
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Fig. 3: Comparison between U-ELM and standard methods to handle data with missing entries.



V. CONCLUSIONS

This paper presented an extension of ELMs to deal with
datasets containing missing data. The proposed approach uses
the UT to estimate individually the entries of the transformed
input matrix H . It is worth noting that the same approach can
be used in test time in order to provide outputs in face of
incomplete feature vectors.

Results showed the proposed ELMs using UT achieved the
best overall results when compared to the standard strategies
to deal with missing data.

Future works may include extensions of U-ELM to make
it robust to the uncertainty around hij and the generalization
of its formulation in order to use mixture of gaussians.

ACKNOWLEDGMENTS

The authors acknowledge the support of CNPq (Grant
402000/2013-7 and Grant 456837/2014-0 ).

REFERENCES

[1] D. Sovilj, E. Eirola, Y. Miche, K.-M. Bjrk, R. Nian, A. Akusok, and
A. Lendasse, “Extreme learning machine for missing data using multiple
imputations,” Neurocomputing, vol. 174, Part A, pp. 220–231, 2016.

[2] R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data.
Wiley-Interscience, 2002.

[3] P. Kang, “Locally linear reconstruction based missing value imputation
for supervised learning,” Neurocomputing, vol. 118, pp. 65–78, 2013.

[4] D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, pp.
581–590, 1976.

[5] P. J. Garcia-Laencina, J.-L. Sancho-Gomez, and A. R. Figueiras-Vidal,
“Pattern classification with missing data: A review,” Neural Comput.
Appl., vol. 19, no. 2, pp. 263–282, Mar. 2010.

[6] K. Pelckmans, J. D. Brabanter, J. Suykens, and B. D. Moor, “Handling
missing values in support vector machine classifiers,” Neural Networks,
vol. 18, no. 56, pp. 684 – 692, 2005, {IJCNN} 2005.

[7] D. P. P. Mesquita, J. P. P. Gomes, and A. H. S. Jr., Neural Information
Processing: 22nd International Conference, ICONIP 2015, Istanbul,
Turkey, November 9-12, 2015, Proceedings, Part I, 2015, ch. A Minimal
Learning Machine for Datasets with Missing Values, pp. 565–572.

[8] E. Eirola, A. Lendasse, V. Vandewalle, and C. Biernacki, “Mixture of
gaussians for distance estimation with missing data,” Neurocomputing,
vol. 131, pp. 32 – 42, 2014.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal
Statistical Society, Series B, vol. 39, no. 1, pp. 1–38, 1977.

[10] L. Hunt and M. Jorgensen, “Mixture model clustering for mixed data
with missing information,” Computational Statistics Data Analysis,
vol. 41, no. 34, pp. 429 – 440, 2003, recent Developments in Mixture
Model.

[11] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501,
2006.

[12] D. P. P. Mesquita, J. P. P. Gomes, L. R. Rodrigues, and R. K. H. Galvão,
“Pruning extreme learning machines using the successive projections
algorithm,” IEEE Latin America Transactions, vol. 13, no. 12, pp. 3974–
3979, Dec 2015.

[13] Q. Yu, Y. Miche, E. Eirola, M. van Heeswijk, E. Sverin, and
A. Lendasse, “Regularized extreme learning machine for regression with
missing data,” Neurocomputing, vol. 102, pp. 45 – 51, 2013.

[14] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, Mar
2004.

[15] A. S. C. Alencar, W. L. Caldas, J. P. P. Gomes, A. H. D. Souza,
P. A. C. Aguilar, C. Rodrigues, W. Franco, M. F. D. Castro, and
R. M. C. Andrade, “MLM-rank: A ranking algorithm based on the
minimal learning machine,” in 2015 Brazilian Conference on Intelligent
Systems (BRACIS), Nov 2015, pp. 305–309.

[16] G. Huang, G. B. Huang, S. Song, and K. You, “Trends in extreme
learning machines: A review,” Neural Networks, vol. 61, pp. 32–48,
2015.

[17] C. Pan, D. S. Park, Y. Yang, and H. M. Yoo, “Leukocyte image
segmentation by visual attention and extreme learning machine,” Neural
Computing and Applications, vol. 21, no. 6, pp. 1217–1227, 2012.

[18] A. A. Mohammed, R. Minhas, Q. M. J. Wu, and M. A. Sid-Ahmed,
“Human face recognition based on multidimensional PCA and extreme
learning machine,” Pattern Recognition, vol. 44, no. 10-11, pp. 2588–
2597, 2011.

[19] G. B. Huang and H. A. Babri, “General approximation theorem on feed
forward networks,” in Proceedings of the International Conference on
Information, Communications and Signal Processing. IEEE, September
1997, pp. 698–702.

[20] S. J. Julier and J. K. Uhlmann, “Extreme learning machine: theory and
applications,” in SPIE Aerosense Symposium, 1997, pp. 182–193.

[21] B. P. Leão and T. Yoneyama, “On the use of the unscented transform for
failure prognostics,” in IEEE Aerospace Conference. Big Sky: IEEE,
March 2011.

[22] M. Farrokhsiar and H. Najjaran, Autonomous and Intelligent Systems:
Second International Conference, AIS 2011, Burnaby, BC, Canada,
June 22-24, 2011. Proceedings. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, ch. Analysis of Future Measurement Incorporation
into Unscented Predictive Motion Planning, pp. 112–123.

[23] R. V. der Merwe and E. A. Wan, “The square-root unscented kalman fil-
ter for state and parameter-estimation,” in Acoustics, Speech, and Signal
Processing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE International
Conference on, vol. 6, 2001, pp. 3461–3464 vol.6.

[24] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml


