Improved Airport Ground Traffic Control with
Domain-Dependent Heuristics

Augusto B. Corréa*, André G. PereiraT, Marcus Ritt}
Institute of Informatics
Federal University of Rio Grande do Sul, Brazil
{abcorrea* ,agpereirafr ,marcus.ritt} } @inf.ufrgs.br

Abstract—In this paper we study the application of a domain-
dependent heuristic to airport ground traffic control. We consider
two variants of the problem. In the first, proposed for the
International Planning Competition in 2004, the in-bound and
out-bound airplanes have fixed parking and take-off positions.
In the second, more realistic variant a controller can assign
dynamically for each airplane the runway for take-off or the
parking position, such that the total movement of planes at the
airport is minimized. We are particularly interested in the second
variant, which has an implicitly defined goal state where multiple
states could satisfy the goal condition, and the impact of this fact
on domain-independent and domain-dependent heuristics. We
compare domain-independent heuristics in the Fast Downward
planner on this domain to a domain-dependent heuristic.

Keywords-Airport planning, Single-agent search, Heuristic
search, Domain-specific heuristics, A™.

I. INTRODUCTION

One of the planning problems that arises in airports is the
ground traffic control problem, which is to define the paths
out-bound airplanes have to take from their parking position
to the runway for take-off, or the paths in-bound airplanes have
to take after landing until getting to a parking position. The
main objective is to find a plan that achieves this goal most
economically, i.e. with the least movement of the airplanes,
respecting restrictions on the movement coming from concerns
about security, for example the minimum distance between
airplanes.

A realistic version of the airport traffic control problem
has been introduced in the International Planning Competition
(IPC) in 2004 [1]. In this version the airport is modeled as a
directed graph, with designated parking and take-off positions.
All airplanes have an orientation and other airplanes must keep
a minimum distance from the rear of an airplane with a running
engine.

There are several versions of the airport ground traffic
control problem. In the simplest version, all routes for in- or
out-bound airplanes are fixed. This is often done to simplify
the decision making of the ground traffic controller. However,
even this version is NP-complete [2]. If the routes are not
prefixed, deciding if a polynomially bounded plan or any
feasible plan exists is PSPACE-complete, even when the goal
positions of the airplanes are known [3]. This is one of the
reasons that makes the airport domain one of the most difficult
domains in the IPC. Four versions have been introduced in IPC
2004 and they differ in the modeling of time. The simplest

version is non-temporal. There also exist temporal versions
with and without time windows. In practice the goal is to
minimize the makespan of an instance, i.e. the total time or
number of actions until all airplanes reach their goal positions.

In this paper we are interested in solving the non-temporal,
sequential version of the problem optimally, i.e. we search
for plans which minimize the total number of actions. In the
instances of IPC 2004 the goal positions of the airplanes
(a runway for out-bound airplanes, and a parking position
for in-bound airplanes) are fixed. Here we are interested in
a variant of the problem that permits free goal positions,
such that in-bound airplanes can choose any of the available
parking positions and out-bound airplanes can take off at
several available runways. This variant is more realistic since,
for example, the parking position of an airplane may change
after touchdown. Besides being a more realistic variant, this
change makes the problem also more difficult to solve, since
for a; in-bound airplanes, p parking positions, a, out-bound
airplanes and r runways the number of goal states increases
from 1 to ((fi)raﬂ.

Another motivation to study this variant is that it has several
similarities with Sokoban, a well-known hard problem [4],
including a large number of goal states, the existence of
linear conflicts (i.e. pairs of airplanes that mutually block their
independent shortest path to the corresponding goal positions),
and (usually) instances with a regular, structured geometry,
which may be decomposed into several independently solvable
subproblems. Thus we are interested in evaluating if tech-
niques that work in Sokoban are effective for this problem.

The techniques used by solvers for airport ground traffic
problems usually are domain-independent. These techniques
do not take into consideration particularities of the problem,
and try to solve it only by general strategies on the problem
instances. A domain-dependent technique may reach better
results compared to domain-independent techniques. On the
airport domain, for example, a domain-dependent technique
could use the distance from each segment to an airplane or the
information of the structure of parking and runway positions.

Pattern database based techniques are one of the most
effective domain-independent heuristics for solving this prob-
lem [5], [6]. A pattern database heuristic solves an abstraction
of the concrete problem, and stores the shortest distance to
the closest abstract goal state for all abstract states in a
look-up table. For solving the concrete problem, querying the

look-up table for the abstraction which corresponds to the
concrete state gives a valid lower bound on the distance to the
shortest concrete goal states, and can be used as an admissible
heuristic.

In the next section, we define the problem formally, and
discuss related work. In Section III we propose two domain-
dependent heuristic functions, based on shortest paths and
matchings for the problem. Computational experiments are
reported and discussed in Section IV. We conclude and point
out some possible future research in Section V.

II. PRELIMINARIES
Airport Ground Traffic Control

An airport is defined by a set of segments S. Each segment
s € S can be either a taxiway, a parking position, or a
runway for landing and take-off, and has a type t(s) € T =
{taxi, park, runway}. A position of an airplane is defined
by its current segment and its direction. The direction defines
to which end of the segment the airplane is oriented, and
restricts the possible successor segments. Thus, an airport can
be modeled by a directed graph G = (V, A), with vertex set
V =8 x D, where D = {north, south} represents the possible
directions of an airplane, and arc set A, which defines the
possible successor segments and directions for a given current
segment and direction.

An instance of the ground traffic control problem is defined
by a set of airplanes P, with positions p : P — V and goal
segments g : P — S. The type of a goal segment g(a)
for an airplaine @ € P must be either park for in-bound
airplanes or runway for out-bound airplanes. An airplane can
be either moving, parked or airborne, defined by its current
mode m(a) € M = {parked, moving, airborne}.

Mode parked is only permitted if the current segment of
the airplane has type park. A parked airplane can start up its
engines to enter mode moving. Only in this mode an airplane
can change its current segment and direction (p, d) to another
segment and direction (p’,d’) if ((p,d), (p’,d’)) € A. If an
airplane is in mode moving at a segment of type park it
can similarly shut down its engines to enter mode parked.
Mode airborne is only valid for segments of type runway. An
airplane in mode moving at a runway can take off to switch to
mode airborne. There is no operator for landing. All operators
in the airport domain have unit cost.

A moving airplane at position v € V will block a set
of segments B(v) C V due to the engine exhaust of the
airplane. The blocked segments depend on the orientation of
the airplane and its size (larger airplanes may block more
segments). For current positions p and modes m, segments
B(p,m) = Ugeps B(p(a)) are blocked, where P9(m) = {a €
P | m(a) # airborne} is the set of airplanes on the ground.
Let S7(p,m) = {s | (s,d) = p(a) for some a € P9(m)} be
the segments occupied by airplanes on the ground. The current
positions p are valid, if on each segment there is a most one
airplane of type moving or parked, i.e. |S9(p, m)| = |P9(m)|,
and no airplane on the ground is at a blocked segment,
i.e. S9(p,m) N B(p,m) = 0.

The standard airport domain with fixed goal positions
can be modeled as a weighted state space problem P =
(S,0,s,T,w), with a set of states S, a set of operators O,
an initial state s € S, a set of goal states 7' C S and a
cost function w : O — R, as follows. The set of states
S C (V x M)IPI consists of all feasible positions and modes
of the airplanes. The initial state s = (pg,mg) is given by
feasible initial positions pg and modes m . Similarly the only
goal state is T = {s;} with sy = (py,my) given by feasible
final positions p; and modes m . The set of operators consists
of starting engines, moving, taking off, or parking, as described
above, and all actions have unit cost, i.e. w(o) = 1 for all
operators o € O. The alternative definition of the problem with
free parking positions can be modeled in a similar way. In this
case each airplane has only a mode that can be either parked
or airborne as a goal. The aim of this definition is to simulate a
situation where a controller could assign dynamically for each
airplane the segment for taking off or parking. This defines a
partial assignment to each airplane, and thus multiple goal
states can satisfy the goal condition.

Standard Set of Instances

The standard set of instances of the airport domain repre-
sents real-world conditions of an airport ground traffic control
problem. There are four versions of the domain: non-temporal,
temporal, temporal-timewindows, and temporal-timewindows-
compiled. The last three versions include time constraints, as
for example the time to move across a segment and time
windows where a segment will be blocked. We address the first
version which is the most widely researched in the literature.

In the standard set, for each instance there is a unique
explicitly defined goal state. The goal state is defined
by a set of two predicates (is-parked ?a ?s) and
(airborne ?a ?s), where a is an airplane and s is a
segment. Each predicate defines the segment that the air-
plane must reach to achieve the goal condition. There are
two actions, park and takeoff, that make the predi-
cates true. Thus, the transformation from fixed to free goal
positions consists of removing from the is-parked and
airborne predicates the segment definition. In practice,
the predicate (is-parked ?a ?s) has been changed to
(is-parked 72a). A similar change has been applied to
the predicate airborne. We did not add any other action
to the domains and just adapted it to make it consistent. The
resulting definition produces an implicit defined goal state,
where usually multiple states will satisfy the goal condition.

The standard set from IPC-4 has 50 instances. There are five
types of airports with an increasing number of segments. The
two largest airport types are realistic encodings of the Munich
airport. The smallest airport has 17 segments, the largest one
has 457. The maximum number of planes is 15. In 31 of the
50 instances there are more airplanes which are out-bound
than in-bound, and that the number of goal segments for out-
bound airplanes is usually small, and never more than four.
When considering the implicit defined goal state, the effect of
multiple goal states in the first three types of airports is limited.

The situation changes in the more realistic airports of type 4
and 5. In these cases we have still a small number of 1 to 4
of in-bound airplanes, but 30 possible parking positions, and
thus up to (340) possible goal states for the in-bound airplanes.

Related Work

General traffic control problems have been studied by
Hatzack and Nebel [2]. They proposed the only domain-
dependent heuristic solution for the problem we are aware
of. They also have showed that the problem with fixed routes
is equivalent to a job shop scheduling problem which has to
satisfy blocking conditions without swaps. The reduction to
job shop scheduling also shows that the problem with fixed
paths still remains NP-complete.

Triig et al. [7] concluded that the best planners in that
time were not yet able to solve real-world instances. They
also observe that the core of the problem is to resolve the
conflicts that arise when several airplanes have to access the
same segments and that the automated planners are not aware
of this fact.

As mentioned in the introduction, our interest in the airport
stems mainly from its similarities with Sokoban and other
transportation problems with a large number of goal states.
Apart from airport-specific blocking rules, both problems share
the main difficulties which come from the interaction of mov-
able objects, and, for the variant of the airport ground traffic
control problem with free goal positions, from the k! goal
states. More generally, a larger class of block-moving games
shares these characteristics. In a previous work was identified
the weakness of applying pattern databases to problems with
lots of goal states, and a decomposition of the instance to
overcome it was proposed [8], [9], [10]. Here we are interested
to see if this weakness applies to the airport ground traffic
control problem, and if it may be overcome with similar
techniques.

As the airport domain is one of the problems introduced in
the IPC 2004, we decided to use the solver Fast Downward,
which has won the IPC 2004 [11]. Fast Downward already
brings the IPC 2004 airport benchmark in the Planning Do-
main Definition Language (PDDL) format. It also has a large
set of admissible domain-independent heuristics. These two
characteristics make the results of Fast Downward easy to
compare to our work.

III. A DOMAIN-DEPENDENT HEURISTIC FOR THE
AIRPORT DOMAIN

A domain-independent heuristic does not have prior knowl-
edge about the structure of the problem. Consider, for example,
a domain-independent pattern database heuristic. In the airport
domain such heuristic would have to compute for each airplane
the distance from every segment to every goal position by a
reverse search. However, we know that the distances for all
airplanes are the same, independent of other characteristics
such as the airplane’s size. Thus, we can compute the distances
only once and reuse them for all airplanes. This is an example

where we can use knowledge about the problem structure to
improve the efficiency of the heuristic.

In the version of the airport domain with free goal positions
an in-bound airplane can park at any parking segment. This
is similar to Sokoban, where a box must be pushed to one
of many goal squares. However, in the goal state each at
goal square must be exactly one box. The standard approach
to compute the heuristic function in Sokoban is to compute
a minimum cost perfect matching between stones and goal
squares, covering all goal squares with stones. Inspired by
this approach, we propose a matching based heuristic for the
Airport Domain.

Pre-Processing

We extract a directed graph for each instance whose vertices
represent the segments of the airport. Two segments (u,v) are
connected if there is an action that moves an airplane from
a segment u to segment v. We then compute the shortest
path between all pairs of segments of this graph and store the
distances in a look-up table. This is done in a pre-processing
phase, and all airplanes use the same distances during the
search to compute the heuristic values. These distances are the
shortest path between every pair of segments without taking
into account path conflicts, blocked segments or any other
interactions between the airplanes.

Closest Goal Heuristic

Our first approach is the domain-dependent closest goal
heuristic. The closest goal heuristic is the sum of the distances
required for all airplanes to reach their goal positions using
the pre-computed distances. For the version with fixed goal
positions, we look up the distance for each airplane to reach its
specific goal position. In the version with free goal positions,
we have to find the closest goal position for each airplane. For
both versions, the cost for computing the heuristic is linear
in the number of airplanes, since we can pre-compute the
distances in constant time and then calculate the closest goal
position for each airplane in each state. Additionally, each
out-bound airplane must start up its engine and finally take
off. Thus we increase the heuristic by one or two for each
out-bound airplaine according to its current mode. Similarly,
in-bound airplanes must shut down their engine to park, so
we increase the heuristic by one for each in-bound airplane
whose engine is still running.

In the version with fixed goal positions, with a; in-bound
airplanes the closest goal heuristic returns the cost to cover
a; parking positions. This is not the case in the version with
free goal positions. In the latter version, all a; airplanes can
be mapped to the same parking position, which is not a valid
solution. In this case, we could lose up to the sum of the a; —1
farthest parking positions in the heuristic value.

Matching Heuristic

Another natural heuristic to solve the airport domain prob-
lem is based on matchings. To compute the minimum distance
for all airplanes to reach a different goal position, we construct

a bipartite graph. In this graph one part of the vertices
represents the airplanes and the other part of the vertices
represents all possible goal positions. Between each airplane
and goal position, we add an edge with a weight corresponding
to the length of the shortest path the airplane can take to reach
that goal position. Since the number of goal positions exceeds
the number of airplanes, we add a suitable number of dummy
airplanes to make the cardinality of the two parts equal. These
airplanes have distances of 0 to each goal position. Then
a minimum weight perfect matching of airplanes and goal
positions is a lower bound on the number of moves needed to
bring each airplane to a different goal position.

We compute the minimum perfect matching using the Blos-
som algorithm [12] and also using the pre-processed distance
information extracted from the instances. The matching can
be seen as an extension of the closest goal approach. The
difference is that while the closest goal heuristic tries to
minimize the individual distance for each airplane to its
goal position without taking into account multiple airplanes
occupying to the same goal position, the matching heuristic
tries to minimize the sum of the distances ensuring that two
airplanes cannot be moved to a same goal position. As for the
closest goal heuristic, we can increase the heuristic value by
the number of outstanding engine shutdown operations.

The algorithm considers only airplanes that must be parked.
Since the segments of out-bound airplanes will become avail-
able for other airplanes after take-off, every out-bound airplane
could head for the same runway segment. We can notice that
in the fixed goal positions variant of the problem the minimum
perfect matching is trivial, since each vertex of the bipartite
graph would have only one edge and would be equivalent to
the closest goal approach.

IV. EXPERIMENTAL RESULTS

In this section we report computational experiments com-
paring domain-independent and domain-dependent heuristics
on the airport domain with fixed and free goal positions. For
the experiments we use the stable version 1.4 of the Fast
Downward planner [11]. We have chosen Fast Downward for
our implementation to be able to compare better to the domain-
dependent heuristics, and have implemented our domain-
dependent heuristics within the framework provided by the
planner.

In the following we describe the experiments on these in-
stances. The first experiment evaluates six standard heuristics,
on the variants with fixed as well as free goal positions, the
second analyzes the closest goal heuristic on the variant with
fixed goal positions, and the third analyzes the closest goal and
the matching heuristic on the variant with free goal positions.
All experiments have been run on a PC with an AMD FX-8150
processor running at 1.4 GHz and 32 GB of main memory. All
domain-independent heuristics have been run with their default
parameters. We have imposed a time limit of 30 minutes and
a memory limit of 4 GB for each run.

TABLE I: Results for domain-independent heuristics.

Fixed paths Free paths
Heur. Opt. Nodes t Opt. Nodes t
blind 22 1925645.7 83 23 23568559 10.7
hmax 23 1914256 1158 23 4174270 167.7
LM-cut 28 2508.2 447 26 191543 955
M&S 18 669808.3 1274 18 910637.7 142.0
GAPDB 25 808624.5 7.1 27 1591448.8 149
iPDB 28 1594.0 258.7 28 68120.0 236.3

Evaluation of domain-independent heuristics

In our first experiment we evaluate standard domain-
independent heuristics on the airport domain. All heuris-
tics have been run with their default parameters. Table I
shows the results for blind search, the heuristics hpax [13],
landmark-cut [14] (LM-cut), merge-and-shrink [15] (M&S),
and two heuristics based on pattern databases: a pattern
database which uses a genetic algorithm to create the patterns
(“GAPDB”) [16], and the iPDB [17], [18]. For each heuris-
tic we report the number of instances solved to optimality
(“Opt.”), and the average number of explored nodes (“Nodes™)
and average time (“t”) in seconds over the optimally solved
instances.

The standard domain-independent heuristics are able to
solve between 18 and 28 instances. Heuristics LM-cut and
iPDB perform best for fixed as well as free goal positions.
We can see that all heuristics need more nodes and more
time to solve the instances with free goal positions, as ex-
pected. However, this is not reflected in the number of solved
instances. While LM-cut solves two instances less, iPDB
solves the same number of instances, and blind search and
the GAPDB heuristic even solve more. This happens mostly
in instances with a high number of out-bound airplanes, since
the relaxation of the take-off positions simplifies the problem.

The closest goal heuristic on instances with fixed goal posi-
tions

In our second experiment we have evaluated the closest
goal heuristic on the instances with fixed goal positions. We
compared the results for the two best standard heuristics LM-
cut and iPDB, and the closest goal heuristic. For the instances
which could not be solved by at least one method, we report
in Table II the initial heuristic value (“h”) and the best f-value
(“f”) — the lowest f-value on the open list when the time limit
is reached or the instance is solved.

The closest goal heuristic solves 32 instances, four more
than LM-cut and iPDB. The solution time of closest goal is
always less (with the exception of instance 23) and often by
an order of magnitude. Comparing only instances which were
solved by all three methods, the closest goal heuristic needs
only 61s while LM-cut needs 603s and iPDB 3619s. However,
LM-cut and iPDB expand significantly fewer nodes than the
closest goal heuristic. The closest goal initial heuristic value is
weaker than iPDB when the number of airplanes is relatively

TABLE II: Values of the initial heuristic (h) and best f-
value (f) for instances with fixed parking positions. Best initial
heuristic values or best f-values are highlighted. Only instances
which were not solved by at least one method and present
different values for initial h and best f-values are shown.
Instances for iPDB that were not solved and present f-value
equals to initial heuristic value reached the time limit before
the conclusion of the pattern database construction.

LM-cut iPDB Closest
Inst. h f h f h f
31 358 358 357 357 358 358
32 390 390 387 387 390 390
33 393 393 388 388 393 393
34 427 427 422 422 427 427
35 433 433 425 425 433 433
39 208 208 210 210 208 210
40 190 190 191 191 190 191
41 178 178 179 179 178 179
42 257 257 259 259 257 257
43 223 223 224 224 223 223
44 227 227 229 229 227 227
45 249 249 251 251 249 249
46 290 290 292 292 290 290
48 423 423 399 399 423 423
49 451 451 447 447 451 451
50 685 685 670 670 685 685
Avg. 3019 3019 299.8 299.8 3019 302.1

small compared to the number of goal segments, however, it
does not necessarily impact the final f-value. Also, the initial
h-value for closest goal and LM-cut get much better as the
number of goal variables increases (larger instances). All the
instances that were not solved reached the time limit for the
three methods.

The closest goal and the matching heuristic on instances with
free goal positions

In the third experiment we have evaluated the closest goal
and the matching heuristic on the instances with free goal
positions. Table III reports the number of nodes (“Nodes”)
and the time (“t”) for LM-cut, iPDB, the closest goal and
matching heuristics on the instances which were solved by at
least one approach. In Table IV we show the initial heuristic
value (“h”) and the final f-value (“f”) for instances which
were not solved by at least one method.

With free goal positions LM-cut was able to solve 26, iPDB
28, closest goal 30 and matching 33 instances. As expected, we
observe a degradation in performance of all methods, due to
the larger number of goal states, and worse heuristic estimates.
The performance degradation is limited, since the instances
have a small number of airplanes. There are only 25 instances
with more than two in-bound airplanes, and only 8 of them
were solved with fixed goal positions, and the performance
degradation is limited to the latter. This also explains why the
matching heuristic is not substantially better than the closest
goal heuristic. The difference will be only visible, for a larger

TABLE III: Comparison of the closest goal and matching
heuristics to the two best domain-independent heuristics on the
instances with free parking positions. Only instances which
were solved by at least one approach are shown. Instances
marked with { were also solved by blind search.

LM-cut iPDB Closest Matching
Inst. Nodes t Nodes t Nodes t Nodes t
1f 9 0 9 0 9 0 9 0
of 10 0 10 0 11 0 11 0
3t 20 0 24 0 34 0 34 0
4t 21 0 21 0 21 0 21 0
5t 22 0 22 0 230 23 0
6f 65 0 42 2 43 0 43 0
7t 65 0 43 2 45 0 45 0
8t 425 0 247 7 639 0 639 0
of 793 2 2399 39 7559 0 6982 0
10f 19 0 19 0 19 0 19 0
11f 22 0 22 0 23 0 23 0
127 40 0 40 2 41 0 41 0
13t 50 0 39 1 41 0 41 0
14F 61 0 40 2 65 0 65 0
15 155 0 64 14 105 0 105 0
16 402 1 94 123 307 0 307 0
17t 1766 11 321 436 4423 0 4337 0
18 8358 81 119075 1557 1102988 68 1101462 63
197 419480 1194 763101 155 1722408 70 55108 3
20 - > - > - > 569285 41
21t 96 1 9% 10 97 0 97 0
22F 54311 596 54368 56 67148 6 146 0
23 - > 966423 1513 1220965 170 150 0
24 158 7 157 585 217 0 217 0
25 - > - > - > 137419 49
26 - > - > - > 295878 211
27 1502 269 - > 2073 1 2073 1
361 79 1 79 22 79 0 79 0
37t 5435 185 154 224 22602 4 22602 12
38" 4648 1323 118 261 21075 3 21075 9
39 - > - > 1644337 374 1644337 977
40 - > 197 752 982983 277 982983 581
41 - > 136 843 399723 99 399723 203
Tot. 26 15083 28 15616 30 6478 33 2158

numbers of in-bound airplanes. For example, in instance #39,
which has no in-bound airplanes, both heuristics need the
same number of nodes. In contrast, in instance #23, which has
3 in-bound airplanes, the matching heuristic is substantially
better. However, it is remarkable that the matching heuristic
dominates closest goal on the initial states and in instances
where the number of in-bound airplanes is strictly greater
than the number of out-bound airplanes the matching heuristic
also leads to a significantly higher lower bound than closest
goal. The matching heuristic also expands fewer nodes than
the closest goal heuristic when the number of in-bound planes
is equal or greater than the number of out-bound airplanes.
In 47 of the 50 instances the matching heuristic presents
the best final f-value over all methods. In 17 of the 25
instances presented in Table IV the lower bound for matching

TABLE 1V: Values of the initial heuristic (h) and best f-
value (f) for instances with free parking positions. Best initial
heuristic values or best f-values are highlighted. Only instances
which were not solved by at least one method and present
different values for initial h and best f-values are shown.
Instances for iPDB that were not solved and present f-value
equals to initial heuristic value reached the time limit before
the conclusion of the pattern database construction.

LM-cut iPDB Closest Matching
Inst. h f h f h f h f
20 113 113 113 113 113 113 115 115
23 144 144 144 144 144 148 148 148
25 206 206 206 206 206 206 208 208
26 196 196 196 196 196 196 200 200
28 288 288 288 288 288 288 290 290
29 284 284 284 284 284 284 288 288
31 352 352 351 351 352 352 354 354
32 366 366 363 363 366 366 370 370
33 387 387 384 384 387 387 389 389
34 403 403 399 399 403 403 407 407
35 383 383 378 378 383 383 391 391
39 142 142 144 144 142 144 142 144
40 159 159 160 160 159 160 159 160
41 134 134 135 135 134 135 134 135
42 185 185 187 187 185 185 185 185
43 179 179 180 180 179 179 179 179
44 174 174 176 176 174 175 176 176
45 190 190 192 192 190 190 194 194
46 205 205 207 207 205 205 205 205
47 264 264 251 251 264 264 268 268
48 325 325 266 266 325 325 325 325
49 354 354 276 276 354 354 358 358
50 533 533 400 400 533 533 537 537

Avg 260.4 260.4 248.9 248.9 260.4 260.7 262.6 262.8

is better than the best f-value for LM-cut and closest goal.
The same occurs for 16 instances when compared to iPDB.
As the problem variant with fixed goal positions the initial
heuristic value of iPDB is better than any other method when
the number of airplanes is small compared to the number of
goal segments. When the number of goal variables increases
to 6 or more, iPDB becomes the weakest method. The closest
goal heuristic is much less informative than the matching
heuristic, but it performs better than iPDB and LM-cut when
comparing lower bounds and number of instances solved.

V. CONCLUSIONS AND FUTURE WORK

We have proposed two domain-dependent heuristics for the
airport domain and compared their performance to standard
domain-independent heuristics in the Fast Downward plan-
ner. We found that even relatively simple domain-dependent
heuristic such as closest goal or matching can improve the
results of powerful domain-independent heuristics. It is also
remarkable to notice that in instances where the number of
in-bound airplanes is larger than the number of out-bound
airplanes the results of the closest goal and matching heuristics
are significantly better than those of iPDB or LM-cut. In these

instances the matching heuristic also presents better results
than the closest goal heuristic as measured by the number of
expanded nodes and initial and final lower bounds.

In future work, it is possible to apply other strategies that
were successful in Sokoban, such as pattern searches [19] and
linear conflicts [4]. Finally, one could propose new instances
increasing the number of in-bound planes this would present
a more realistic version of the domain, since in real-world
airports the number of in and out-bound airplanes should
be approximately the same. In this more realistic version,
given our current evidence, the heuristics iPDB and LM-cut
would likely have a greater performance degradation while the
matching heuristic would maintain the same performance.

REFERENCES

[1] J. Hoffmann, S. Edelkamp, S. Thiébaux, R. Englert, F. dos Santos Lipo-
race, and S. Triig, “Engineering benchmarks for planning: the domains
used in the deterministic part of IPC-4,” J. Artif. Intell. Res., vol. 26,
pp. 453-541, 2006.

[2] W. Hatzack and B. Nebel, “The operational traffic control problem:
Computational complexity and solutions,” in Rec. Adv. Al Planning, 6h
Europ. Conf. Planning, 2001.

[3] M. Helmert, “New complexity results for classical planning bench-
marks,” in Proc. 16th Int. Conf. Autom. Plan. Sched., 2006, pp. 52-61.

[4] A. Junghanns and J. Schaeffer, “Sokoban: Enhancing general single-
agent search methods using domain knowledge,” Artificial Intelligence,
vol. 129, no. 1-2, pp. 219-251, 2001.

[5] J. C. Culberson and J. Schaeffer, “Pattern databases,” Computational
Intelligence, vol. 14, no. 3, pp. 318-334, 1998.

[6] S. Edelkamp, “Planning with pattern databases,” in European Confer-
ence on Planning, 2001, pp. 13-24.

[7]1 S. Triig, J. Hoffmann, and B. Nebel, “Applying automatic planning
systems to airport ground-traffic control — a feasibility study,” in Proc.
27th Annual German Conf. Al, ser. LNCS, no. 3238, 2004, pp. 183-197.

[8] A. G. Pereira, M. Ritt, and L. S. Buriol, “Finding optimal solutions to
Sokoban using instance dependent pattern databases,” in Proc. 6th Int.
Symp. Comb. Search, M. Helmert and G. Roger, Eds. AAAI Press,
Sep. 2013.

, “Solving Sokoban optimally using pattern databases for deadlock

detection,” in Anais do XI Encontro Nacional de Inteligéncia Artificial

(ENIA), 2014.

——, “Optimal Sokoban solving using pattern databases with specific

domain knowledge,” Artif. Intell., vol. 227, pp. 52-70, 2015.

M. Helmert, “The fast downward planning system.” J. Artif. Intell. Res.,

vol. 26, pp. 191-246, 2006.

J. Edmonds, “Paths, trees, and flowers,” Canad. J. Math, vol. 17, pp.

449-467, 1965.

B. Bonet and H. Geffner, “Planning as heuristic search,” Artif. Intell.,

vol. 129, pp. 5-33, 2001.

M. Helmert and C. Domshlak, “Landmarks, critical paths and abstrac-

tions: What’s the difference anyway?” in Proc. 19th Int. Conf. Autom.

Plan. Sched., A. Gerevini, A. Howe, A. Cesta, and 1. Refanidis, Eds.,

2009, pp. 162-169.

M. Helmert, P. Haslum, and J. Hoffmann, “Flexible abstraction heuristics

for optimal sequential planning,” in Proc. 17th Int. Conf. Autom. Plan.

Sched., 2007, pp. 176-183.

S. Edelkamp, “Automated Creation of Pattern Database Search Heuris-

tics,” in Proceedings of the 4th Workshop on Model Checking and

Artificial Intelligence, 2007, pp. 35-50.

P. Haslum, A. Botea, M. Helmert, B. Bonet, and S. Koenig, “Domain-

independent construction of pattern database heuristics for cost-optimal

planning,” in Proc. 22th AAAI Conf. Art. Intel., 2007, pp. 1007-1012.

S. Sievers, M. Ortlieb, and M. Helmert, “Efficient implementation of

pattern database heuristics for classical planning,” in Proc. 5th Int.

Symp. Comb. Search, D. Borrajo, A. Felner, R. Korf, M. L. abd Carlos

Linares Lopez, W. Ruml, and N. Sturtevant, Eds. AAAI Press, 2012,

pp. 105-111.

A. Junghanns and J. Schaeffer, “Single-agent search in the presence of

deadlocks,” in AAAI/IAAI, 1998, pp. 419-425.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

