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Abstract—The classification task, when performed by machine
learning algorithms, requires previous training on labeled in-
stances. In many applications, the data labeling process is expen-
sive and can affect the predictive performance of classification
models. A current solution has been the use of active learning,
which investigates strategies for data labeling. Its main goal
is to decide which instances should be labeled and added to
the training set, reducing the overall labeling costs. However,
the strategy normally depends on a learning algorithm, which
should be chosen by a machine learning specialist - usually
based on a cross-validation procedure. Consequently, there is
a deadlock: without the complete training set, the algorithm
that will present the best learning curve cannot be known in
advance. Ideally, some type of automatic selection should be
employed to solve this deadlock. This study investigates the use of
meta-learning for automatic algorithm selection in active learning
tasks. Experimental results show that meta-learning is able to
find correspondences between algorithms and dataset features in
order to help active learning to reduce the risks of incurring in
unexpected labeling costs.
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I. INTRODUCTION

Machine learning encompasses several relevant topics with
significant impact on everyday life. An almost omnipresent
application is the automatic classification of objects. A classi-
fication system usually induces a learning model to be able
to predict the class of new objects, called instances. The
induction of such models have been successfully performed by
learning algorithms. However, a common problem is that the
algorithm must be, somehow, chosen by the machine learning
specialist. This algorithm selection can be a difficult task,
because there is no learning approach that performs well in
all domains [1].

Traditionally, classification algorithms are chosen based
on the specialist knowledge and according to an evaluation
process that requires the application of cross-validation on
the training set [2]. Nonetheless, when the training set is not
large enough, cross-validation cannot be properly employed -
reducing the confidence of the specialist to make decisions.
This is specially critical in interactive learning applications,
when the classifier should be able to make predictions during
- not only after - learning. Thus, the learning algorithm must

be defined, despite the incipience of the training set that is
still under construction. This situation is common in the active
learning setting (Section III), focus of this study.

Active learning is an optimized sampling process that
search for the most relevant unlabeled instances to build a
representative training set for a given application domain.
Frequently, a large pool of unlabeled instances is available to
be labeled with their real classes revealed by a supervisor,
called oracle. This task usually has a cost (human effort,
time and/or materials) constrained by a budget that limits the
training set size, imposing the need for parsimonious use of
the supervision efforts. This problem has been addressed by
several active learning strategies [3], [4]. However, since active
learning usually needs a classifier, the earlier mentioned choice
problem remains unsolved: which algorithm to choose? This
leads the specialist to a situation where she/he has to decide
with few or no labeled instances. The solution proposed in
the present work to deal with this difficulty is to employ a
recommendation system based on meta-learning (Section IV)
to assist the specialist.

Meta-learning aims to discover which algorithms are suit-
able for a certain task. Previous studies have shown that meta-
learning is able to recommend adequate algorithms for new
problems (Section IV) when a collection of previous datasets
are available for the induction of a meta-model. However,
supervised meta-learning requires the new problem to have
a complete training set. Therefore, it is not possible to use
it to discover the best algorithm during an active sampling
process.

This study deals with the learning algorithm choice problem,
proposing and experimentally investigating the use of meta-
learning to recommend learning algorithms for the active
learning scenario in Section V. Additionally, different meta-
learners are evaluated.

This text is organized as follows. Possibly related ap-
proaches are revised in Section II. Section III describes the
main aspects of active learning. Meta-learning is the subject
of Section IV. The proposed method is detailed in Section
V. In Section VI, the experimental methodology is explained
and the results are reported. Conclusions and future work are
presented in Section VII.



II. RELATED WORK

The type of meta-learning most related to this work is the
recommendation of clustering algorithms [5], [6]. Another
related approach is the use of a set of unsupervised meta-
features like the Validity set [7] to recommend classifiers.
Since such meta-features do not depend on labels, they can
also characterize datasets constrained by the active learning
scenario.

Despite the apparent similarity, the scenario of this work is
fundamentally different from algorithm recommendation for
clustering: while the former targets algorithms that induce
classification models, the latter targets algorithms that group
similar instances. No algorithm recommendation for active
learning has been reported yet.

Recommender systems can predict the best algorithm for
a given problem. They can also predict ranking positions -
sorting techniques from the most suitable to the less suitable
subject. A well established algorithm for ranking prediction is
called Predictive Clustering Trees - PCT [8]. Otherwise, if the
recommendation intends only to suggest the best option, any
single-target classification algorithm can be used.

In the sections III and IV, the two central areas of this
study are briefly revised: active learning and meta-learning,
respectively.

III. ACTIVE LEARNING

Active learning provides an effective way to selectively label
data [3]. To reduce acquisition costs, only the most relevant
data for the learning process should be labeled. This study
focus on the pool-based query, when the learner is given the
freedom to choose the most informative instance x∗ among
several others in a pool U [9]. After chosen, the instance is
sent to an oracle, which determines its real class label y from
a set Y of possible classes and adds 〈x∗, y〉 to a growing
training set L. This is usually a costly operation.

Several successful strategies have been proposed for the
pool-based setting [4]. They usually depend on a learning
algorithm, but there are also agnostic strategies. Some of
them do not rely on learning algorithms. This specific group
of strategies is convenient because, despite their lack of a
learning bias, they still allow improvements in label complexity
[10] over traditional/passive learning. Therefore, they could
be a solution to the algorithm choice problem. Nevertheless,
agnostic approaches lack the prospective capability that a
learning bias could provide to optimize the search for relevant
instances.

Some of the active learning strategies are summarized in
Table I. Although there are only 11 base strategies, they
amount to 22, when the variants are considered - for instance:
the three distance variants represented by the suffix *. The
table also gives the abbreviation adopted for each strategy. In
short, Rnd, the simplest strategy, is the selection of instances at
random, until the budget is over. Mar and Ent are also simple,
but based on the level of uncertainty of the learner: the more
ambiguous the prediction, the more informative the instance
might be, if queried.

TABLE I
ADOPTED ACTIVE LEARNING STRATEGIES. * INDICATES THE STRATEGY

HAS VARIANTS: euc (EUCLIDIAN DISTANCE), man (MANHATTAN D.), mah
(MAHALANOBIS D.), ent (ENTROPY CRITERION) AND acc (ACCURACY C.).

Random, Margin and Entropy sampling [3] Rnd, Mar and Ent
Agnostic and Hybrid Training Utility [11] ATU* and HTU*
Hierarchical Sampling [12] HS
Query-By-Committee [13] QBC
Density Weighted [14] DW*
Expected Error Reduction [15] EER*
Density weighted Training Utility [14] TU*
Multiclass Specific-General hypothesis network [4] SGmulti
Simple margin for SVM [16] SVMsim
Balanced k-furthest-first for SVM [17] SVMbal

Besides random sampling, there are other agnostic strate-
gies: ATU, HS and SGmulti. The remaining strategies are
gnostic. They represent distinct paradigms, each with its own
sampling bias, which, in turn, is directly related to the learning
bias of the algorithm adopted as the learner.

IV. META-LEARNING

The predictive performance of a classification system de-
pends on the bias of the learning algorithm used. Many
learning algorithms, with different learning biases, have been
proposed and some of them are often adopted as a universal
solution in a heterogeneous range of problems. However, as
stated by the theorems known as no free lunch, there is no bias
suitable to all domains [1]. Therefore, the selection of a learn-
ing algorithm should follow a judicious decision. Usually, the
algorithm is chosen by a machine learning specialist. She/He
relies upon her/his knowledge about the data domain and the
available algorithms. The decision is made according to a
performance metric that associates algorithms and datasets.
Meta-learning has been employed in such kind of decision
problems. This technique can speed up the algorithm selection
and allows a less subjective decision.

Meta-learning studies the improvement of learning algo-
rithms by experience [18]. The improvement occurs at the
meta-level, which is situated one level above conventional
learning, named base-level. In the base-level, the algorithm
bias is fixed; while, in the meta-level, the base-level bias can be
dynamically chosen. There are diverse types of meta-learning,
e.g., stacked generalization, characterization by model and
direct characterization.

Direct characterization is the most appropriate and the
choice in this study. It is based on measures taken directly from
the instances in a given dataset. Conversely, other approaches
might employ intermediate algorithms. Probably, the first
dataset characterization was done by [19], aiming to predict
accuracy and processing time. It was based on the number of
instances available and number of attributes. The next set of
attributes was proposed in the project STATLOG [20]. Several
additional meta-features were proposed, like entropy, kurtosis,
asymmetry and correlation for numeric attributes. Variations
of this set are proposed in later work [18], like the adoption of
histograms to keep more detailed information [21]; or, like the
binarization of the degree of dispersion of the target attribute



in regression tasks [22]. There is also work directed towards
optimization [23], data streams [24], ranking prediction [25]
and noise detection [26].

Finally, there are approaches to the recommendation of
unsupervised algorithms [5], [6]. This is the closest task to the
recommendation of learning algorithms for active learning, as
already discussed in Section II.

V. PROPOSED METHOD

We argue that the learning algorithm can be objectively
chosen, despite the fact that it will be used in the process of
construction of its own training set. We propose a few steps
to solve such deadlock:

1) organize a collection of already labeled datasets1 from
several domains;

2) define an active learning strategy;
3) determine the best learning algorithm for each dataset

simulating the application of the strategy2;
4) characterize all datasets extracting the meta-features

values according to our proposal in Table II;
5) generate a meta-instance for each dataset:

the characterization process provides the attributes;
the name of the best learner represents the class;

6) train a classifier with the meta-instances generated in the
previous step; and,

7) apply the classifier to the target dataset to determine the
recommended learner.

An overview of the system is depicted in Figure 1.
The ranking recommendation is analogous, except for small

changes in steps 3, 5 and 6, where algorithms must be ranked
instead of selected only the best.

A. Meta-learner

We propose to use a random neural network ensemble
(RNN) as the meta-learner for the recommender system be-
cause it can be viewed as an algorithm that require the
adjustment of only a single parameter [27]. The combination
of several models into an ensemble is convenient due to
the smoothing of potentially overfitted models. A bagging
[28] of 1000 PCT is also employed as an alternative meta-
learner, since PCT are frequently used in recommender sys-
tems and the performance is reported to be equal or better
than individual trees [29]. The large size of both (RNN and
PCT) ensembles is an attempt to guarantee that there is no
accuracy loss due to a lack of members. This does not imply
in overfitting nor loss of generalization [30]. The size of
the RNN ensemble is the same as PCT’s. The aggregation
of all 1000 predictions (of class probabilities or ranking) is
done by summation after a normalization. A combination
of both algorithms in an heterogeneous ensemble is another
considered possibility. Indeed, any prediction algorithm could
be employed, provided that the meta-learner is suitable to the
desired task: classification or ranking prediction.

1We constrained the datasets collection by pool size: at least 50 instances.
2Simulation should keep the same conditions of the target problem, like

initial training set size and available budget.

TABLE II
METAFEATURES (MF) DESCRIPTION.

MF Description Formula
#at number of attributesa |A|
#ex pool sizea |U|
#nc number of classesb |Y |
#ea pool size by number of

attributesc

|U|
|A|

%no proportion of nominal
attributesc

1
|A| |{a ∈ A | isnom(a) = 1}|

lgex logarithm of pool sized log |U|
lgea logarithm of pool size by

number of attributesd
log
|U|
|A|

#no∗ number of nominal
values:c

#noa = |a|,a ∈ A

µ∗ meanc (idem) µj = 1
|U|

∑
x∈U

xj 1 ≤ j ≤ |A|

σ∗ standard deviationb (idem) σj = 1
|U|

∑
x∈U

(xj − µj)2

en∗ normalized entropyb

(idem)
enj = −1

log |U|
∑

x∈U
xj log xj

ρ∗ correlation between
attributesb (idem)

ρjk =
(σ2
j · σ2

k)
− 1

2
∑

x∈U
(xj − µj)(xk − µk)

sk∗ skewnessb (idem)
skj =

n
(n−1)(n−2)

∑
x∈U

(xj−µJ )3

σ3
j

ku∗ kurtosisb (idem)
kuj =

n(n+1)
(n−1)(n−2)(n−3)

∑
x∈U

(xi−µj)
4

σ4
j

−3(n− 1)2[(n− 2)(n− 3)]−1

cnkC
cnhC

connectivitye k-means
connectivity hierarc. clust.

cluster validity measure [31]

dukC
duhC

Dunn indexe k-means
Dunn index hierarc. clust.

cluster validity measure [32]

sikC
sihC

silhouettee k-means
silhouette hierarc. clust.

cluster validity measure [33]

a Characterization suggested by [19].
b Based on STATLOG project [20].
c Based on the feature set by [21].
c Adaptation of the summarization proposed by [21].
d Meta-features for clustering algorithm recommendation [5].
e Meta-features for classification algorithm [7] and for clustering algorithms

[6] recommendation.
obs The symbol * indicates that the metafeature is summarized by its

maximum (max), minimum (min), mean (mea) and min/max values. The C
subscript indicates the adopted number of clusters: |Y |, 1.5|Y | or 2|Y |.
The set A represents all attributes. The function isnom returns 1 if an
attribute is nominal or 0 otherwise.

B. Model selection

RNN has the number of neurons L to be adjusted. This is
done, for each ensemble member, by choosing the value that
produces the smallest leave-one-out error, which is instantly
calculated from the trained network via PRESS statistic [34].
Only sigmoid additive nodes were considered.

VI. EXPERIMENTS

The proposed method was empirically evaluated. Results are
confirmed by the Friedman test with Nemenyi post-hoc test.

Although PCT already represents a common algorithm
suitable for classification (and ranking), other metaclassifiers
were also tested, like 5NN. Random Forest with 1000 trees
was used as a meta-learner alternative to ease reproducibility
of the experiments (details in Section VI-B). Additionally,
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Fig. 1. Overview of the recommender system. Dashed elements represent the active learning loop, which benefits from the proposed algorithm recommendation.

two baselines - the proportion of the majoritary class and the
mean ranking - were adopted for classification and ranking
prediction, respectively.

A. Methodology

We adopted a dataset-dependent budget of ¢ queries, ¢ =
min( |U|2 , 200). Five runs of 5-fold cross-validation were ap-
plied for the base learners and ten runs of 10-fold for the meta-
learners [2]. Duplicate instances were removed to simulate a
consistent oracle. It was assumed that the label of only one
instance per class was known before the start of the active
sampling process3 [35]. The performance indicator at the base
level was the Area under the Learning Curve (ALC) [36] with
the kappa measure [37].

B. Datasets and base learners

The evaluation was performed on 94 datasets from the UCI
repository [38]. The process was repeated for each one of
the 22 strategies and variants (Table I) to show the general
applicability of the approach. The employed classifiers as
base learners were: 5NN, NB4, SVM with RBF5 and RFw6

[39]–[41]. When not stated otherwise, all parameters used the
default values from the Weka library [42]. SVM was of type
C-SVC [43] with the following parameters: γ = 0, 5, C = 1,
cache 200MB and eps = 0.001. 5NN was weighted by the
complement of the distance.

Datasets are detailed in Table III. They were binarized and
standardized or discretized when needed, i.e., for distance
calculations or training some of the algorithms (NB, SVM
and 5NN). There were no missing attribute values.

3Except for HS strategy.
4Naive Bayes
5Support Vector Machines with Radial Basis Function
6Weka implementation of Random Forest.

TABLE III
DATASETS DETAILS. #EX: NUMBER OF EXAMPLES; #NC: NUMBER OF

CLASSES; #AT: NUMBER OF ATTRIBUTES; #NO: NUMBER OF NOMINAL
ATTRIBUTES;

Name #ex #nc #at #no
1-abalone 3class 3342 3 8 1
2-arcene 160 2 998 0
3-artificial char... 3890 10 7 0
4-autoUn. au1 1000 798 2 20 0
5-autoUn. au7 30... 880 5 12 4
6-autoUn. au7 700 560 3 12 4
7-balance scale 500 3 4 0
8-banana 4233 2 2 0
9-banknote authen... 1078 2 4 0
10-bupa 273 2 6 0
11-car evaluation 1382 4 6 6
12-cardiotocograp... 1692 10 35 0
13-cardiotocograp... 1692 3 35 0
14-climate simula... 432 2 20 0
15-connect. mines... 166 2 60 0
16-connect. vowel... 422 11 10 0
17-connect. vowel... 792 11 13 0
18-dbworld subje... 50 2 242 242
19-first order th... 4402 6 51 0
20-flare 337 6 12 2
21-glass 170 6 9 0
22-habermans surv... 226 2 3 0
23-heart di. clev... 242 5 13 2
24-heart di. hung... 234 2 13 0
25-hepatitis 124 2 19 13
26-hill valley wi... 970 2 100 0
27-horse colic su... 240 2 27 14
28-indian liver p... 456 2 10 1
29-ionosphere 280 2 33 0
30-iris 118 3 4 0
31-kr vs kp 2557 2 36 36
32-leaf 272 30 15 0
33-leukemia hasli... 80 2 50 0
34-mammographic... 514 2 5 0
35-mfeat fourier 1595 10 76 0
36-molecular prom... 85 2 57 57
37-molecular spli... 2404 3 60 60
38-monks1 346 2 6 0
39-monks2 346 2 6 6
40-monks3 346 2 6 0
41-movement libras 264 15 90 0
42-movement l. 10 192 15 90 0
43-mushroom 6499 2 21 21
44-ozone eighthr 2021 2 72 0
45-ozone onehr 2022 2 72 0
46-page blocks 4314 5 10 0
47-parkinsons 156 2 22 0

Name #ex #nc #at #no
48-phoneme 4316 2 5 0
49-pima indians d... 614 2 8 0
50-planning relax 141 2 12 0
51-qsar biodegrad... 842 2 41 0
52-ringnorm 5920 2 20 0
53-robot fai. lp1 70 4 90 0
54-robot fai. lp4 93 3 90 0
55-robot fai. lp5 130 5 90 0
56-robot nav s. r... 4142 4 2 0
57-saheart 370 2 9 1
58-seeds 168 3 7 0
59-semeion 1274 10 256 0
60-spambase 3366 2 57 0
61-spect heart 178 2 22 22
62-spectf heart 214 2 44 0
63-statlog austra... 552 2 14 6
64-statlog ge. cre... 800 2 24 0
65-statlog heart 216 2 13 0
66-statlog i. seg... 1669 7 18 0
67-statlog land s... 2287 6 36 0
68-statlog vehi s... 677 4 18 0
69-steel plates f... 1553 2 33 0
70-systhetic cont... 480 6 60 0
71-teaching assis... 85 3 5 2
72-thyroid ann 2967 3 21 0
73-thyroid hypoth... 2468 2 25 18
74-thyroid newthy... 172 3 5 0
75-thyroid sick 2201 5 26 20
76-thyroid sick e... 2468 2 25 18
77-tic tac toe 766 2 9 9
78-turkiye stud... 2667 13 32 0
79-twonorm 5920 2 20 0
80-user knowledge 322 5 5 0
81-vertebra c. 2c... 248 2 6 0
82-vertebra c. 3c... 248 3 6 0
83-volcanoes a3 1217 5 3 0
84-volcanoes b2 8530 5 3 0
85-volcanoes d1 7002 5 3 0
86-volcanoes e2 863 5 3 0
87-voting 223 2 16 16
88-waveform v2 4000 3 40 0
89-wdbc 455 2 30 0
90-wholesale chan... 352 2 7 0
91-wilt 3855 2 5 0
92-wine 142 3 13 0
93-wine quality w... 3149 5 11 0
94-yeast 4class 1015 4 8 0



C. Experimental results

The experiments are divided in class prediction and ranking
prediction.

D. Class prediction

The four ensembles (RNN, PCT, RFw and RNN+PCT) and
the two non-ensemble classifiers (5NN and Maj - majoritary
class) are compared in Table IV by balanced accuracy [44].
The Maj column can be considered the baseline, since it is
analogous to a random classifier. All ensembles outperformed,
often by a large margin, the baseline for all strategies. This
means that using the recommender system is considerably
better than the best guessing, i.e, it is better than just defaulting
to the most frequent winner.

The other non-ensemble classifier, 5NN, although better
than Maj, was the worst algorithm for almost all strategies.
This suggests that the recommendation can be affected de-
pending on the type of the metaclassifier.

The statistical significance of the advantage of the recom-
mender system is detailed in Table V. RNN and PCT ensem-
bles were better than the baseline and 5NN with a p-value of
0.01. RFw and RNN+PCT outperformed Maj within the same
confidence. 5NN was better than Maj as well, but with a p-
value of 0.10. Finally, RNN achieved the highest number of
victories, but not enough to reach statistical significance when
compared to the other ensembles.

These findings, although limited to the 94 datasets em-
ployed, are enough to argue that active learning is likely to
benefit from meta-learning.

TABLE IV
BALANCED ACCURACY (%)/STANDARD DEVIATION. Highest values are in
bold face. Each mean value is calculated along all runs of cross-validation.

RNN PCT RFw RNN+PCT 5NN Maj
Mar 49/17 40/15 37/15 41/13 35/8 34/9
Ent 53/15 49/12 43/16 43/14 35/8 33/6
TUman 56/15 56/17 55/15 57/15 43/18 30/4
TUmah 55/23 47/17 54/24 53/23 40/11 30/4
TUeuc 50/19 49/16 44/12 49/15 47/20 28/4
SGmulti 34/16 31/14 31/9 30/10 30/8 28/4
Rnd 40/22 34/12 31/9 29/8 24/9 27/3
EERent 34/16 40/14 33/14 35/13 34/15 27/3
HS 45/22 39/11 34/10 34/11 37/11 27/3
DWmah 48/17 47/10 44/16 47/19 41/13 26/3
DWeuc 58/18 52/16 52/12 49/16 52/12 26/3
ATUeuc 42/16 40/10 44/16 42/13 34/12 26/3
SVMsim 30/14 34/14 37/13 36/13 30/16 25/0
SVMbal 40/13 42/13 36/12 36/11 31/11 25/0
QBCRFw 39/16 47/13 42/12 43/11 38/13 25/0
HTUman 45/15 50/14 49/13 47/14 40/13 25/0
HTUmah 46/16 49/15 51/11 49/12 29/12 25/0
HTUeuc 46/14 53/17 45/10 47/11 37/9 25/0
EERacc 33/13 27/7 33/11 28/9 31/16 25/0
DWman 45/15 47/16 38/14 37/13 41/14 25/0
ATUman 33/13 39/15 38/12 34/9 33/17 25/0
ATUmah 36/14 43/11 43/14 42/8 29/14 25/0

E. Ranking prediction

In the case of ranking prediction, the suitable algorithms
were RNN, PCT and RNN+PCT ensembles. The mean ranking
(called Def - default) was the baseline. The comparison, given
in Table VI, is based on Spearman’s correlation between

TABLE V
ONE VERSUS ONE BY BALANCED ACCURACY. Confidence levels according

to Friedman test with Nemenyi post-hoc test. Each symbol indicates a
p-value: * (0.01) + (0.05) . (0.10).

1 2 3 4 5 6
1 - RNN - * *
2 - PCT - * *
3 - RFw - . *
4 - RNN+PCT - *
5 - 5NN - .
6 - Maj -

predicted and expected rankings; higher values indicate more
accurate predictions.

Differently from the prediction of classes, in ranking pre-
diction the RNN ensemble dominated the lowest performance
values, whereas RNN+PCT presented almost all highest val-
ues. In fact, according to Table VII, RNN+PCT outperformed
RNN with high significance (p-value of 0.01). Nevertheless,
all ensembles were better than Def with high confidence (p-
values of 0.01; and 0.05 for RNN).

TABLE VI
SPEARMAN’S CORRELATION COEFFICIENT/STANDARD DEVIATION. Highest

values are in bold face.

RNN PCT RNN+PCT Def
Ent 0.525/0.125 0.568/0.074 0.566/0.097 0.528/0.099
Mar 0.525/0.184 0.587/0.156 0.588/0.182 0.516/0.130
SGmulti 0.532/0.130 0.570/0.107 0.567/0.118 0.494/0.094
EERacc 0.567/0.179 0.609/0.140 0.611/0.179 0.460/0.151
Rnd 0.439/0.144 0.453/0.118 0.467/0.165 0.430/0.117
HS 0.487/0.174 0.508/0.109 0.523/0.140 0.418/0.136
EERent 0.454/0.107 0.444/0.147 0.475/0.144 0.364/0.095
TUman 0.466/0.191 0.444/0.185 0.499/0.200 0.324/0.133
TUmah 0.502/0.143 0.476/0.139 0.520/0.118 0.309/0.119
QBCRFw 0.400/0.150 0.409/0.138 0.455/0.169 0.306/0.061
TUeuc 0.484/0.121 0.484/0.172 0.507/0.165 0.301/0.182
DWmah 0.402/0.114 0.457/0.144 0.455/0.146 0.277/0.101
HTUman 0.392/0.199 0.419/0.200 0.449/0.209 0.272/0.121
ATUman 0.316/0.145 0.378/0.112 0.351/0.087 0.263/0.155
ATUeuc 0.308/0.110 0.377/0.102 0.346/0.111 0.261/0.135
ATUmah 0.337/0.163 0.344/0.160 0.369/0.170 0.246/0.151
HTUeuc 0.450/0.116 0.420/0.144 0.484/0.113 0.245/0.135
HTUmah 0.396/0.198 0.413/0.197 0.446/0.194 0.224/0.212
SVMbal 0.316/0.192 0.414/0.183 0.411/0.148 0.203/0.134
DWman 0.441/0.113 0.451/0.121 0.476/0.102 0.201/0.113
DWeuc 0.430/0.141 0.446/0.111 0.460/0.118 0.190/0.083
SVMsim 0.273/0.181 0.390/0.153 0.356/0.159 0.177/0.133

TABLE VII
ONE VERSUS ONE BY SPEARMAN’S CORRELATION. Details in Table V.

1 2 3 4
1 - RNN - +
2 - PCT . - *
3 - RNN+PCT * - *
4 - Def -

VII. CONCLUSION

In this paper, we addressed the algorithm choice problem in
active learning. There are several strategies, usually based on
model uncertainty measures. However the model induction is
only possible after the definition of the learning algorithm.
Strategies rely on the machine learning specialist decision



about which is the proper learning algorithm to generate the
model.

We proposed to adopt unsupervised meta-learning to avoid
the subjectiveness of the specialist decision and the scarceness
of training data. Experimentally, we showed that this is not
only possible, but it can also be done with a performance
superior to important baselines for the collection of 94 datasets
employed.

Recommendation of strategies, instead of learners, is in-
tended as future work.
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