
Tree-based Grammar Genetic Programming to
Evolve Particle Swarm Algorithms

Péricles B. C. Miranda and Ricardo B. C. Prudêncio
Universidade Federal de Pernambuco

Pernambuco, Recife

Abstract—Particle Swarm Optimization (PSO) is largely used
to solve optimization problems effectively. Nonetheless, the PSO
performance depends on the fine tuning of different parameters.
To make the algorithm design process more independent from
human intervention, some researchers have treated this task as an
optimization problem. Grammar-guided Genetic Programming
algorithms (GGGP), in special, have been widely studied and ap-
plied in the context of algorithm optimization. GGGP algorithms
produce customized designs based on a set of production rules
defined in the grammar; differently from methods that simply
select designs in a pre-defined limited search space. In this work,
we proposed a tree-based GGGP technique for the generation of
PSO algorithms. This paper intends to investigate whether this
approach can improve the production of PSO algorithms when
compared to other GGGP techniques already used to solve the
current problem. In the experiments, a comparison between the
tree-based and the commonly used linearized GGGP approach
for the generation of PSO algorithms was performed. The results
showed that the tree-based GGGP produced better algorithms
than the counterparts. We also compared the algorithms gen-
erated by the tree-based technique to state-of-art optimization
algorithms, and the results showed that the algorithms produced
by the tree-based GGGP achieved competitive results.

Index Terms—Particle Swarm Optimization; Genetic Program-
ming; Algorithm Generation;

I. INTRODUCTION

Particle Swarm Optimization (PSO) has become a widely
used and studied algorithm due to its flexibility and competi-
tive results in different applications [1]. A variety number of
studies were conducted aiming to improve the performance of
the standard PSO algorithm [1]. Several of these and other
developments have shown to be useful and improved the
PSO performance significantly. Nonetheless, the PSO strongly
depends on the fine tuning of its parameters to perform well
[1]. This paper addresses the problem of designing PSO
algorithms that is to determine a suitable configuration of pa-
rameters and components (i.e., a design) for the PSO algorithm
when applied to a given optimization problem. Among the
techniques already used for the current problem [2], [3], [4],
[5], we emphasize the Grammar-guided Genetic Programming
algorithm (GGGP) [6]. GGGP produces programs/algorithms
based on production rules defined in a grammar. Differently
from simply selecting designs from a pre-defined set of possi-
ble solutions, GGGP algorithms generate new and customized
algorithm designs [7]. Different types of GGGP algorithms
were proposed, such as Context-free Grammar Genetic Pro-
gramming (CFG-GP) [6], Grammatical Evolution (GE) [7] and
Logic grammar-based genetic programming (LOGENPRO)

[8]. According to [6], these algorithms can be categorized by
the way the individuals (solutions) are represented. Derivation
tree and linear genome are considered the main forms to repre-
sent solutions [6]. Although the linearized GGGP approaches
have become more popular than the tree-based ones for the
algorithm design problem, some issues related to locality
and generation of invalid individuals arose due to the linear
genome representation [9]. These problems are critical and
introduce a source of inconsistency into the search space, and
become an obstacle for evolution and search [9]. In the context
of the PSO algorithm design problem, we highlight that only
linearized GGGP approaches, more specifically GE, have been
adopted for the current problem [3], [4], [5]. Although the
results presented in these works showed to be promising, the
previously mentioned problems (e.g. locality and invalid indi-
viduals) interfered negatively the search. Thereby, we believe
that an adequate individual representation would improve the
construction of PSO algorithms.

In this work, we adopted a GGGP approach, CFG-GP, which
uses a tree-based representation to define the individuals. The
main reason we have adopted this representation is that it
avoids the locality problem and the generation of invalid
individuals. Nonetheless, as no tree-based GGGP technique
was applied to the PSO algorithm design yet, our main
goal is to investigate its performance on producing designs
considering various optimization problems. In the experiments,
we compared the designs generated by the CFG-GP with the
designs produced by a GE approach, which uses a linear
representation. The results showed that the designs generated
by the CFG-GP were better than the counterpart. We also
compared the algorithms generated by CFG-GP to state-of-
art optimization algorithms. The results showed that the algo-
rithms produced by the CFG-GP achieved competitive results.
This work is organized as follows. Section II presents the basic
concepts of GGGP approaches, focusing on the linear genome
and tree-based representation. Section III contains related work
to optimization of PSO algorithms. Section IV brings the
experimental design. In Section V the results are presented and
discussed. Finally, in Section VI, the conclusions and possible
future works are presented.

II. BACKGROUND

GP has used the potential of grammars almost from its cre-
ation. Since then, grammars have contributed to developments
in the GP area. Initially, GGGP approaches represented a small



portion of the GP area. However, this scenario changed, and
the number of works involving GGGP has increased. The
most well known proposals are the tree-based and linearized
GGGP algorithms [6]. Before going into detail about these
GGGP algorithms, the concepts of genotype and phenotype
need to be clarified. The term genotype is related to the data
structure manipulated by genetic operators such as mutation
and crossover. On the other hand, the phenotype represents an
executable structure (program or algorithm) which represents
the behavior of an individual. Next, both tree-based and
linearized approaches are detailed.

In a tree-based GGGP approach, the genotypes are repre-
sented by a derivation tree produced from a grammar. This
grammar describes a set of rules and expressions (language)
as well as those used in standard GP [6]. The process of fitness
evaluation works by reading the expression tree (phenotype) of
each individual from the leaves of the grammar derivation tree.
After that, it is executed and evaluated as in standard GP. Tree-
based approaches as well as GP, use genetic operators such as
selection mechanism, mutation, reproduction, and crossover.
Although the selection and reproduction are the same used in
standard GP, crossover and mutation operators are different.
Regarding the mutation, an internal node is chosen randomly.
After that, the subtree originated at that node is removed,
and then, changed by a new one. It is worth mentioning that
the novel subtree was randomly produced according to the
grammar, beginning from the same non-terminal. In the case
of crossover, two internal nodes of the derivation tree are
selected at random, and their respective subtrees under them
are swapped. It is important to mention that this crossover
mechanism requires that both chosen nodes must be labeled
with the same non-terminal symbol described in the grammar.
The crossover operator in the tree-based GGGP is similar to
standard crossover in GP, however an additional constraint
defines that the crossover points have the same grammar label.
We highlight that other variations of the same operators for
tree-based techniques can be found in [6].

In the linearized GGGP algorithms, the genotype adopts a
linear sequence structure (vector of genes) to be manipulated
by genetic operators. Differently from the tree-based approach,
the linearized algorithm does not convert the genotype to phe-
notype directly. There is an intermediate state which is built as
a derivation tree according to the grammar, and then, translated
to an expression tree (phenotype). The first conversion, from
genotype to an intermediate state, is performed from the left of
the vector to the right, and the intermediate state is generated
respectively. The linear genome as genotype representation
offers some advantages when compared to the tree-based one.
The most obvious benefit is that this representation allows
the use of theory and practice from fields of evolutionary
computation which also use linear representations such as GA
and Evolution Strategies (ES). Thus, commonly used genetic
operators are available to operate genotype in the linear form.
Because of that, linearized GGGP approaches have called the
attention of the area, and it has been widely studied over
the years. Along the years, different linearized approaches

were proposed as presented in [6]. Nonetheless, Grammatical
Evolution (GE) has become the most broadly used extension
of the GGGP system with a linear genome representation
described earlier in [7]. As well as in other linearized GGGP
approaches, there are two critical issues associated with the
linear representation adopted by the GE [9]. First, a supposedly
valid genotype may result in a phenotype whose fitness can not
be evaluated. This problem can be simply solved by assigning
poor fitness values to these individuals, but this solution
inserts inconsistent individuals into the search. It becomes
an impediment for the linearized GGGP algorithms evolution
whether the number of infeasible phenotypes is large. Different
extensions have been developed to make linearized GGGP
algorithms avoid the mentioned problem. Some of them are
focused on correction of individuals and dynamic grammars.
However, the extensions are considered too complex [9].

The second issue of the linear representation is related to the
locality principle. This principle says that small modifications
in genotype should result in small changes in phenotype [9].
To define operators for linearized GGGP algorithms which
perform small modifications on the genotype is simple. How-
ever, to guarantee that the alterations in the phenotype will
not be larger is challenging. This issue is critical because
a simple modification at one position of the genotype may
modify the expressiveness (coding or non-coding), or meaning
of genes placed after that position. As a consequence, the
phenotype may suffer too many modifications and produce
an entirely different phenotype. In an extremely situation, the
individual ceases to be feasible and becomes infeasible, or
the search process works similarly to a random sampling [9].
Recognizing the problems related to the linear representation
has started the development of a diverse number of works to
understand and enhance the way linearized GGGP algorithms
operate. Nonetheless, most of the solutions recurred to the use
of operators from tree-based algorithms. It is worth mentioning
that the two issues presented early can not happen with tree-
based GGGP approaches [9]. The fact that the linearized
GGGP has been adopted unanimously over the last decade
does not mean that it is the most appropriate algorithm among
all GGGP algorithms already proposed.

III. PSO ALGORITHM DESIGN PROBLEM

PSO is a successful optimization algorithm and it follows
a set of simple steps [1]. Initially, a predetermined number of
particles have their position and velocity randomly initialized.
At each iteration of the algorithm, each particle moves through
the search space by updating its own position and velocity
until a stop criterion is reached. The particles’ velocity is a
combination between the best position found by itself ~p(t)
(pbest) and by the best position found by its neighborhood ~g(t)
(gbest) [1]. In the standard PSO, a new velocity is calculated
by the following equation:

~vi(t+ 1) = ~vi(t) + c1r1(~pi(t)− ~xi(t)) + c2r2(~gi(t)− ~xi(t)),
(1)



where i = 1, ..., N , N is the number of particles; c1 and c2
are the cognitive and social acceleration coefficients; r1 and
r2 are two random numbers between [0,1]. After updating the
particle’s velocity, the following equation is used to update the
particle’s position:

~xi(t+ 1) = ~xi + ~vi(t+ 1). (2)

The flexibility and fast convergence of PSO in different
applications called the attention of researchers. Among the
various improvements to standard PSO, we highlight the
development of new topologies, new velocity equations (e.g.,
by adopting the inertia weight or the constriction factor) and
by adopting mutation operators [1], [10]. As a result of the
great diversity of PSO components and hyper-parameters,
to define the most suitable design for the PSO considering
a given optimization problem becomes a hard task. Some
early works handled the PSO algorithm design as another
(meta)optimization problem to perform this process indepen-
dently from human intervention and evaluate the candidate
designs systematically [11], [2], [5]. In this case, each solution
of the search space is a possible design for the PSO algorithm
for a given problem. The objective function, in turn, is the
same one used in the (base)optimization problem.

Initially, the optimization techniques adopted to tune the
PSO algorithm were used simply to select parameters from
a limited pool of candidates [11], [12], [2]. However, with
the advent of GGGP approaches, some works [4], [5] adopted
the GE approach, as said, a linearized GGGP approach to
evolve/generate PSO designs. The results presented by the
these works showed to be promising and that GE may be
used to optimize PSO designs. Nonetheless, some problems
(e.g. locality and invalid individuals) arose due to the linear
genome representation adopted by the GE approach. These
issues may introduce a source of inconsistency into the search
space and consequently, harm the search process, as said in
Section II.

The use of GGGP algorithms for the PSO algorithm design
problem has not been investigated deeply. Few works adopted
GGGP, and all of them used a linear genome representation
to evolve PSO algorithms. Thus, we intend to evaluate a tree-
based GGGP approach for the problem at hand. Our hypothesis
is that the tree-based approach may improve the construction
of PSO algorithms and avoid problems faced in previous
works.

IV. EXPERIMENTAL DESIGN

In this section, we present the experiments performed to
compare the tree-based and linearized GGGP approaches on
the PSO algorithm design problem. To perform this compar-
ison, we adopted two well-known algorithms: GE, using the
linear genome representation, and the CFG-GP, using the tree-
based representation. The GE implementation used here is
that developed by [5]. This implementation, as previously said
in section III, reached promising results in the generation of
PSO algorithms. The CFG-GP implementation adopted here is

based on the work developed in [13]. Complementary to the
CFG-GP and GE, we also adopted a random search procedure
in the experiments. This procedure was executed repeatedly
producing solutions by using a method of random initialization
of the GE. Our intention is to use the random search as a
baseline measure against which the performance of the GE
and CFG-GP on each optimization problem can be evaluated.

In this work, both GGGP approaches and the random search
evolved the PSO design (components and parameters) for a
given optimization problem as input. The PSO algorithm with
the parameters and procedures to be optimized is presented in
Algorithm 1. The elements which are in the format of tag <>
represent the parameters or procedures that can be replaced
by values defined in the grammar.

Algorithm 1: PSO Algorithm
Require: size: size of swarm, nIt: number of iterations
swarm = Random initialization of size particles
Evaluate all p in swarm
gbest = Choose best according to <GBEST>
for i = 0 to maxIt do

for all p in swarm do
<UPDATE-VELOCITY> of p
Update position of p
if (rand(0-1) < <PROB-MUTATION>) then

Mutate p according to <MUTATION>
end if
Evaluate p
Update pbest

end for
Update gbest according to <GBEST>

end for

Here, we used the grammar proposed by Miranda and
Prudêncio [5] for the PSO algorithm generation. This grammar
considers different components and parameters for PSO (see
Figure 1), and it defines the possible options for a range of
PSO designs. It is worth mentioning that the available values
specified in the grammar are commonly used in the literature
due to their importance in the generation of good solutions
[7]. Next, all the PSO aspects considered by the grammar are
presented:

Acceleration constants: the constants <C1> and <C2>
denote the weight of the acceleration components which lead
the particles’ position toward to their best social or cognitive
positions. The adjustment of these constants changes the bal-
ance of the search process. Lower values for <C1> and <C2>
make the particles explore more the search space, whereas
higher values make the particles focus on a target region
[1]. The choice of these values is dependent on the problem.
Nonetheless, these values are usually chosen between 0 and 3
[1].

Velocity update: we adopted two options of velocity equa-
tions. First, using the inertia weight with different possible
values. Second, the constriction factor (χ) using a fixed value



equals to 0.7. These equations are the two most known velocity
updating equations for PSO [1]. Other parameters compose the
velocity equations such as the acceleration constants <C1>,
<C2> and the inertia weight <INERTIA>;

Topology: the tag <GBEST> denotes the topology procedure
that will be used to provide the neighborhood’s positions
for the velocity equation. As the topology defines how the
particles interact with each other during the search, it performs
a significant role in the optimization process. In this work,
we chose seven well-known topologies in literature [1]. The
selected topologies are heterogeneous, in other words, they
present different strategies of exploitation and exploration
aiming to improve the PSO performance;

Mutation: a strategy to improve diversity in a swarm is to
include in the PSO a mutation operator, as regularly adopted
in evolutionary algorithms. The tag <MUTATION> represents
possible mutation operators for the PSO. This tag can assume
five mutation operators suggested by [10]. This tag also
considers the possibility of using no mutation operator (λ). The
tag <PROB-MUTATION> defines the adopted values of mutation
probability.

Fig. 1. Grammar for PSO algorithm optimization.

The experiments were divided into two phases. First, we
compared the designs produced by the CFG-GP to the designs
produced by the GE and the random search model considering
a set of optimization problems. Second, we compared the
algorithms produced by CFG-GP with algorithms adopted in
the competition of the International Conference of Swarm
Intelligence 2014 (ICSI 2014) [14], considering the same set
of problems. Our goal is to verify whether the generated
algorithms by the CFG-GP achieve competitive results in
comparison to consolidated algorithms in the literature. The
parameters adopted by the GGGP approaches were the same
used in [9], except the crossover operator employed by the GE

TABLE I
THE PARAMETERS USED FOR ALL EXPERIMENTS

Value
Parameter GE CFG-GP

Population size 500
Generations 50

Selection method Tournament
Tournament size 3

Elitism count 1
Crossover rate 0.9

Reproduction rate 0.1
Mutation rate 0.5 -

Crossover LHS crossover [15] Subtree(variable length)

Mutation Pointwise Subtree(per-codon)

Crossover node selection Uniform Koza-Style

Initialization Random Ramped-Half
& Half

Min. Initialization depth - 2
Max. Initialization depth - 6

Max. tree depth - 17
Initial codon length 200 -

Wrapping None -

approach. We decided to choose the LHS crossover instead
of a single point crossover, as suggested by [9], because
the LHS was created for the linear genome representation
and consequently performs better than previous proposed
operators. All parameters are presented in Table I. Besides,
it is noteworthy that the competition algorithms and the PSO
designs generated by GE and CFG-GP used the same setting
values: the stop criterion is 5, 000 iterations per simulation and
all algorithms executed 20 times in order to generate the mean
of its fitness values. The random search process was divided
into 50 groups of 500 individuals for each run. This process is
considered equal to sampling 50 initial swarms, each with 500
individuals, and keeping the best individual found during the
run. These numbers were chosen to coincide with the values
adopted in the experiments: a population size of 500 and a
run of 50 generations.

In this work, we adopted in the experiments 32 uncon-
strained continuous optimization problems as benchmarks
from [16]. We highlight that all selected functions are scalable
and adopted 30 dimensions. To evaluate the GGGP approaches
in distinct aspects and levels of difficulty, we carefully chose
problems that can be classified into four categories where
each category is composed of eight different problems. The
categories are named Bowl-Shaped, Plate Shaped, Valley-
Shaped and Many Local Minima. Problems which belong to
the Bowl-Shaped category presents a convex fitness landscape
and only one global minimum solution. The eight problems in
this category are: Sphere (f1), Sum of Different Powers (f2),
Sum Squares (f3), Rotated Hyper-Ellipsoid (f4), Axis parallel
hyper-ellipsoid (f5), Brown (f6), Exponential (f7) and Schwe-
fel01 (f8). The Plate-Shaped and Valley-Shaped categories are
formed by problems where the global optimum is located in a
uniform plain. This characteristic may become an obstacle to



the search process making the problems in the latest two cat-
egories harder than the Bowl-Shaped problems. The functions
which belong to these categories are, respectively: Zakharov
(f9), Bent Cigar (f10), Elliptic (f11), Discus (f12), AMGM
(f13), Rotated High Conditioned Elliptic (f14), Rotated Bent
Cigar (f15) and Rotated Discus (f16); and Rosenbrock (f17),
Shifted Rosenbrock (f18), Shifted and rotated Rosenbrock
(f19), Dixon-Price (f20), Schwefel04 (f21), Rotated Dixon-
Price (f22), Shifted Dixon-Price (f23) and Shifted and rotated
Dixon-Price (f24). Finally, problems which present several
local minima belongs to the Many Local Minima category. The
functions in this category are Ackley (f25), Griewank (f26),
Rastrigin (f27), Alpine (f28), Salomon (f29), Shifted Ackley
(f30), Shifted and rotated Griewank (f31) and Shifted rastrigin
(f32). Each category is composed of minimization problems
and their global minimum is zero. All benchmark optimization
problems adopted as search space’s bounds (−100, 100). We
followed the same instructions defined in the competition of
ICSI 2014.

V. RESULTS

This section presents in details the results obtained from
the comparison among the GGGP approaches when applied to
the PSO algorithm design problem. As previously mentioned
in the section IV, we performed two investigations. First,
we compared the PSO designs generated by the CFG-GP
with the designs produced by the GE and random search
model considering all 32 optimization problems. Second, we
compared between the resulting algorithms generated by CFG-
GP with the algorithms adopted in the ICSI 2014, for each
optimization problem.

A. GGGP approaches

Here in this section, we present the results related to the
first investigation that attempts to determine which GGGP
approach generates better PSO designs for an input problem.
The table II shows the mean of the fitness values of the
algorithms produced by the CFG-GP, GE and random search
model for each optimization problem. To evaluate the results
adequately, we applied the Wilcoxon test to certify whether the
results of the CFG-GP are statistically better than the results
of the counterparts. The symbol Hindicates that the results
achieved by an approach are statistically worse than the CFG-
GP’s ones. As it can be seen in the table II, the algorithms
generated randomly were not able to reach satisfactory results,
and consequently were overcome statistically by the CFG-GP’s
generated algorithms in 100% of the problems. Differently of
the random approach, the algorithms produced by the GE at-
tained promising results. Nonetheless, the CFG-GP surpassed
the GE statistically in 23 out of the 32 optimization problems,
and in the other 9 problems, both approaches reached results
statistically equal.

This massive superiority of CFG-GP over GE is explained
due to the way each approach represents their individuals. As
previously mentioned in section II, the mutation and crossover
operators developed for linear genome representation cause

TABLE II
MEAN OF FITNESS VALUES OF THE ALGORITHMS CFG-GP, GE AND

RANDOM SEARCH MODEL IN EACH OPTIMIZATION PROBLEM.

Category Problems Algorithms
CFG-GP GE Random

Bowl

f1 1.22e-168 1.32e-156 2.19 H
f2 1.42e-103 3.37e-90 3.74 H
f3 1.67e-157 2.16e-127 H 5.94 H
f4 1.33e-158 3.28e-118 H 7.48 H
f5 2.63e-164 1.61e-129 H 12.19 H
f6 1.43e-61 3.13e-35 H 8.31 H
f7 2.41e-155 4.74e-145 7.45 H
f8 2.32e-59 2.68e-41 8.52 H

Plate

f9 1.20e-24 1.32e-04 H 13.15 H
f10 1.43e-58 1.48e-25 H 10.34 H
f11 2.51e-15 2.14e-02 H 19.16 H
f12 1.31e-35 0.36 H 23.23 H
f13 1.14e-77 5.43e-32 H 15.34 H
f14 3.12e-10 4.29e-01 H 20.27 H
f15 1.18e-51 2.23e-24 H 10.32 H
f16 1.73e-39 3.13e-22 14.2 H

Valley

f17 2.97e-04 2.41 H 15.21 H
f18 6.54e-05 4.21 H 12.11 H
f19 8.25e-08 8.55 H 20.75 H
f20 1.12e-08 1.51e-03 12.91 H
f21 1.24e-49 3.15e-20 H 9.76 H
f22 1.07e-23 2.67e-15 16.18 H
f23 1.16e-12 0.37 H 21.17 H
f24 1.56e-11 0.72 H 27.36 H

Many

f25 1.41e-29 1.59e-12 H 30.19 H
f26 0.0 0.0 21.83 H
f27 2.69e-08 3.12 H 24.97 H
f28 2.18e-53 1.75e-27 H 25.17 H
f29 1.13e-12 2.24e-02 H 26.18 H
f30 1.23e-32 1.57e-07 H 25.42 H
f31 0.0 0.0 22.62 H
f32 1.25e-07 3.12 H 27.27 H

the locality problem and the generation of invalid individuals.
These issues harm the performance of linearized approaches
in the task of optimizing the PSO algorithm design. The
same problems do not happen in the tree-based representation.
Although a tree-based approach had not been investigated for
PSO algorithm design, the results presented here showed that
this method, specifically the CFG-GP algorithm, performed
better than the GE, and it may be useful in other contexts.

B. ICSI algorithms

In the last section, we could see the potential of the CFG-
GP approach for the generation of PSO algorithm designs
when compared to the largely used GE approach. Aiming
to investigate whether these generated algorithms can reach
competitive results, this experiment compares the algorithms
produced by the CFG-GP with the algorithms from the ICSI
2014 competition: HSDB (A1), MPCPSO (A2), MBO (A3),
dynFWA (A4), DESP (A5) and EFWA (A6). We highlight that
all algorithms from A1 to A6 adopted their default parameters
used in the competition. We highlight that all algorithms from
A1 to A6 used their default parameters used in the competition.

Here, we performed an experiment which compares the
average fitness values achieved by the algorithms generated



TABLE III
RANKING OF ALGORITHMS CONSIDERING ALL PROBLEMS.

Rank 1 2 3 4 5 6 7
Algs. A2 CFG-GP A5 A6 A4 A1 A3

Avg. rank 1.62 1.92 3.46 3.84 4.83 6.07 6.36

by the CFG-GP for each problem and the average fitness
values obtained by the ICSI 2014 algorithms adopted here.
Table III presents the average ranks of all algorithms across
all problems (for each problem, rank = 1 is assigned to the
best algorithm, rank = 2 is assigned to the second best, and
so on). The CFG-GP achieved the second best place in the
rank from all algorithms. Aiming to verify which algorithms
were overcome by the CFG-GP statistically, we applied the
Wilcoxon signed-rank test. With this, we could see that the
CFG-GP is statistically equivalent to A2, and statistically
better than A5, A6, A4, A1 and A3.

We also carried out a deeper analysis performing a paired
comparison between the CFG-GP and the competition algo-
rithms. We compared the average fitness value achieved by
the best competing algorithm from ICSI 2014 and by the
CFG-GP for each problem. The collected results shown that
the CFG-GP’s generated algorithms achieved fitness values
close to the global optimum for all problems. To verify
whether these results are competitive in comparison to the best
competition algorithm, we applied the Wilcoxon statistical test.
The results achieved by the CFG-GP’s generated algorithms
are promising. In 7 out of 32 optimization problems the
CFG-GP algorithms overcame the results of the competition
algorithms and in the other 25 problems, both approaches
reached results statistically equal.

The comparative results considering the competition algo-
rithms should not be considered in an absolute sense because
the competition algorithms were executed using their default
parameters, whereas the PSO algorithms were optimized by
the CFG-GP. In this sense, the comparison would be un-
fair. Our intention performing this experiment was to verify
whether the CFG-GP can generate adequate PSO algorithms
for the considered optimization problems.

VI. CONCLUSION

This paper discusses the problem of designing PSO algo-
rithms. The intention is to generate automatically PSO designs
that are adequate for a given problem regarding optimization
performance.

In this work, we adopted a tree-based GGGP technique for
the generation of PSO designs. Besides never having been
used in the problem at hand, another reason for choosing this
approach is that it avoids certain issues such as locality and
infeasible solutions presented by other GGGP approaches for
the same problem. Thus, the goal of this paper is to contrast
the performance of a tree-base GGGP with a commonly used
linearized GGGP in the production of PSO designs.

In the experiments, it was performed a comparison among
the tree-based and linearized approaches, and a random search
model as a baseline considering 32 unconstrained optimization
problems with different levels of difficulty. The results showed
that the tree-based GGGP produced better algorithms than
the counterparts in most of the selected problems. We also
compared the algorithms generated by the tree-based technique
to state-of-art algorithms, and the results showed that the
produced algorithms achieved competitive results.

ACKNOWLEDGMENT

The authors would like to thank CNPq, CAPES and
FACEPE (Brazilian Agencies) for their financial support.

REFERENCES

[1] A. P. Engelbrecht, Computational intelligence: an introduction. John
Wiley & Sons, 2007.

[2] J.-L. Liu et al., “Evolving particle swarm optimization implemented
by a genetic algorithm,” Source: Journal of Advanced Computational
Intelligence and Intelligent Informatics, vol. 12, 2008.

[3] R. Poli, C. Di Chio, and W. B. Langdon, “Exploring extended particle
swarms: a genetic programming approach,” in Proceedings of the 7th
annual conference on Genetic and evolutionary computation. ACM,
2005, pp. 169–176.

[4] T. Si, A. De, and A. K. Bhattacharjee, “Grammatical swarm based-
adaptable velocity update equations in particle swarm optimizer,” in
Proceedings of the International Conference on Frontiers of Intelligent
Computing: Theory and Applications (FICTA) 2013. Springer, 2014,
pp. 197–206.

[5] P. B. Miranda and R. B. Prudêncio, “Gefpso: A framework for pso
optimization based on grammatical evolution,” in Proceedings of the
2015 on Genetic and Evolutionary Computation Conference. ACM,
2015, pp. 1087–1094.

[6] R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’Neill,
“Grammar-based genetic programming: a survey,” Genetic Programming
and Evolvable Machines, vol. 11, no. 3-4, pp. 365–396, 2010.

[7] M. O’Neil and C. Ryan, “Grammatical evolution,” in Grammatical
Evolution. Springer, 2003, pp. 33–47.

[8] M. L. Wong and K. S. Leung, “Evolutionary program induction directed
by logic grammars,” Evolutionary Computation, vol. 5, no. 2, pp. 143–
180, 1997.

[9] P. A. Whigham, G. Dick, J. Maclaurin, and C. A. Owen, “Examining
the best of both worlds of grammatical evolution,” in Proceedings of the
2015 on Genetic and Evolutionary Computation Conference. ACM,
2015, pp. 1111–1118.

[10] C. Li, S. Yang, and I. Korejo, “An adaptive mutation operator for particle
swarm optimization,” in Proceedings of the 2008 UK Workshop on
Computational Intelligence. IEEE, 2008, pp. 165–170.

[11] T. Hendtlass, “A combined swarm differential evolution algorithm for
optimization problems,” in Engineering of intelligent systems. Springer,
2001, pp. 11–18.

[12] W.-J. Zhang, X.-F. Xie et al., “Depso: hybrid particle swarm with
differential evolution operator,” in IEEE International Conference on
Systems Man and Cybernetics, vol. 4, 2003, pp. 3816–3821.

[13] P. A. Whigham, “Inductive bias and genetic programming,” in Genetic
Algorithms in Engineering Systems: Innovations and Applications, 1995.
GALESIA. First International Conference on (Conf. Publ. No. 414).
IET, 1995, pp. 461–466.

[14] Y. Tan, J. Li, and Z. Zheng, “Introduction and ranking results of the
icsi 2014 competition on single objective optimization,” arXiv preprint
arXiv:1501.02128, 2015.

[15] R. Harper and A. Blair, “A structure preserving crossover in grammat-
ical evolution,” in Evolutionary Computation, 2005. The 2005 IEEE
Congress on, vol. 3. IEEE, 2005, pp. 2537–2544.

[16] A. Gavana, “Global Optimization Benchmarks and AMPGO,” http:
//infinity77.net/global optimization/, 2005, [Online; accessed 19-July-
2015].

http://infinity77.net/global_optimization/
http://infinity77.net/global_optimization/

