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Abstract—Learning content from videos is not an easy task and tradi-
tional machine learning approaches for computer vision have difficulties
in doing it satisfactorily. However, in the past couple of years the machine
learning community has seen the rise of deep learning methods that
significantly improve the accuracy of several computer vision applica-
tions, e.g., Convolutional Neural Networks (ConvNets). In this paper, we
explore the suitability of ConvNets for the movie trailers genre classifi-
cation problem. Assigning genres to movies is particularly challenging
because genre is an immaterial feature that is not physically present
in a movie frame, so off-the-shelf image detection models cannot be
directly applied to this context. Hence, we propose a novel classification
method that encapsulates multiple distinct ConvNets to perform genre
classification, namely CoNNECT, where each ConvNet learns features
that capture distinct aspects from the movie frames. We compare our
novel approach with the current state-of-the-art techniques for movie
classification, which make use of well-known image descriptors and low-
level handcrafted features. Results show that CoNNECT significantly
outperforms the state-of-the-art approaches in this task, moving towards
effectively solving the genre classification problem.

1 INTRODUCTION

Most of the modern computer-based systems and applica-
tions make use of Machine Learning (ML) at some extent.
ML algorithms aim to automatically learn from experi-
ence, outperforming human beings in several tasks from a
variety of application domains. Successful applications of
ML algorithms include handwritten digit recognition [1],
autonomous driving [2], gene expression classification [3],
[4], protein function prediction [5], [6], software metrics
estimation [7], [8], and real-time stream sensor analysis [9].

Automatically analyzing videos and learning from their
content is an important Computer Vision (CV) application
that could help humans to solve a plethora of problems that
are currently either too tedious or expensive for them to
solve on their own. Whereas the number of efficient ML ap-
proaches for classifying images as belonging to one within
a thousand of labels grows almost exponentially (e.g.,[10],
[11]), video-based applications have shown to be much more
challenging. Such a task has a high complexity level, and
most traditional and well-established ML algorithms have
difficulties in handling it effectively.

Learning from videos is a broad concept and offers many
research possibilities, such as action recognition, categoriza-
tion, element recognition, context analysis, and many other

tasks. Recent work [12], [13], [14] address video analysis
with Deep ConvNets [15], showing exciting first results and
possibly paving the way for many applications to be fur-
ther explored. ConvNets are the state-of-the-art method for
supervised image classification, borrowing concepts from
image processing to ensure some degree of scale, position,
and distortion invariance. They consist of multiple layers of
small neuron sets that process portions of the input data,
tiling the outputs so that their input regions overlap, thus
generating a better representation of the original input.

In this paper, we investigate the use of ConvNets for
automatically classifying movies according to their genre
(e.g., action, horror, drama, comedy). Movie genre classifi-
cation is a much more challenging task than object detection
or scene recognition because of two main problems. First,
the classes to be predicted by the ML algorithm are not
present within any region of the movie frames. Genres are
intangible, immaterial features that cannot be pinpointed
in a frame or sequence of movie frames like an object can.
Second, since classification is performed over movie frames
(or sequences of frames), the training dataset is intrinsically
weakly-annotated, i.e., each frame is labeled according to
the genre of its respective movie. Note that this weak anno-
tation is problematic given that movies from distinct genres
present similar content in most of their frames (e.g., images
of people talking, landscapes, roads with cars, etc.). Hence,
the ML algorithm will have difficulties in understanding
why frames with dialogues are sometimes classified as
drama and sometimes classified as comedy, for example.
For properly addressing these issues, our hypothesis is
that multiple ConvNets that are trained to learn different
aspects of the movie frames/scenes (e.g., motion content,
scene recognition, object detection) can actually perform the
mapping of a sequence of frames into intangible genres.
Our proposed approach is named CoNNeCT (Convolutional
Neural Networks for Classifying Trailers).

We highlight two important contributions in our work.
First, we make publicly available a novel movie trailers
dataset, which comprises more than 3500 trailers from 22
genres. To the best of our knowledge, this is the most
complete dataset that was publicly provided to date. Sec-
ond, we present CoNNeCT in detail, and we empirically
demonstrate that it significantly outperforms the current
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state-of-art movie trailer classification techniques, which
employ traditional image descriptors such as Gist [16],
CENTRIST [17], and w-CENTRIST [18], or that perform low-
level feature classification [19], [20].

This paper is organized as follows. Section 2 presents
related work in the area of movie genre classification.
Section 3 describes in detail our novel approach, whereas
Sections 4 and 5 present the experimental analysis that was
conducted for validating our research hypotheses. Finally,
we end this paper with our conclusions and suggestions for
future work in Section 6.

2 RELATED WORK

Rasheed et al. [19] propose the extraction of low-level fea-
tures to detect movie genres through the application of
the mean-shift classification algorithm [21]. Such features
are responsible for describing raw video elements, such as
the average shot length, color variance, lighting key, and
motion.

A second approach for movie genre classification makes
use of well-known image descriptors to compute high-level
features for each keyframe. The work of Zhou et al. [18]
employs the image descriptors Gist [16], CENTRIST [17],
and w-CENTRIST to extract high-level features from frames
and then perform movie genre classification via k-NN. The
Gist descriptor tries to encode semantic information like nat-
uralness, openness, roughness, expansion, and ruggedness
that represent the dominant spatial structure of a scene [16].
CENTRIST [17] is an image descriptor that applies a spatial
pyramid at different levels, breaking the image into smaller
patches. This process enables the detection of both local
and global information. Each patch is processed through
the Census Transform which compares the pixels with its
neighbors. This step produces an 8-bit vector replacing
the current pixel. Afterwards, it is appended to the final
vector containing all values from the patches. Finally, w-
CENTRIST [18] modifies CENTRIST by taking into account
color information, neither present in Gist nor in CENTRIST.

It is often the case that the image descriptors output is
employed to build a bag-of-visual-words (BOVW) via the
well-known k-means clustering algorithm [18], [16], [17].
The final centroids generated by k-means are known as
codewords, and each keyframe is assigned to one clus-
ter represented by a codeword. Finally, a global multi-
dimensional histogram is built for each trailer, where each
dimension encodes a part of the trailer. In its final step, each
trailer in the test set is processed by the k-NN algorithm
that computes its neighbors according to the χ2 histogram
similarity measure.

Huang and Wang [20] propose a hybrid approach that
combines both low-level visual features and audio infor-
mation, reaching a total of 277 features. They make use of
the well-known jAudio tool [22] to extract audio features
such as audio intensity (measured in terms of the the
RMS amplitude), timbre (based on different structures of
amplitude spectrum), and rhythm. They extract more than
200 audio features with the aid of jAudio, including the
well-known Mel-Frequency Cepstral Coefficients (MFCCs).
Next, they make use of the self-adaptive harmony search
(SAHS) algorithm in order to search for the optimal subset

of features for each of the one-vs-one SVMs that are used to
classify 223 movie trailers from the Apple website.

3 CONNECT
In this section we present our approach for movie genre
classification, namely CoNNeCT (Convolutional Neural Net-
works for Classifying Trailers). Considering that movie
genre classification is a much more complex task than
simple object classification/detection, we claim that a single
off-the-shelf ConvNet model is not enough for solving the
problem (this claim is supported by the experiments per-
formed in Section 5). Hence, our approach makes use of
a combination of features extracted by multiple ConvNet
models, each of them designed to learn different aspects
from the videos, as follows.

The first model is an implementation of the
GoogLeNet [10] architecture, which is pre-trained on the
well-known ImageNet dataset [24] and fine-tuned with
our own movie trailer dataset, namely LMTD (Labeled
Movie Trailer Dataset, details in Section 4). The second
model is also resulting from a fine-tuning procedure over
a GoogLeNet architecture, but pre-trained on the Places
dataset [25]. In the third model, instead of fine-tuning a
pre-trained model, we trained a GoogLeNet architecture on
LMTD from scratch. In order to explicitly extract motion
features from the trailers, the fourth model is a 3D ConvNet
pre-trained on the Sports 1M dataset [13] and fine-tuned
over LMTD as well. Finally, the fifth model is a simple
Multi-Layer Perceptron (MLP) whose input are features
extracted from the audio (MFCCs) of the videos.

With the five above-mentioned models, we believe we
can cover different aspects from the movies, allowing for an
easier mapping to a pre-defined movie genre. For instance,
the model pre-trained with ImageNet data extracts features
that focus on particular elements of the movie frames,
whereas the model pre-trained on the Places dataset extracts
features which characterize scenes and ambients, providing
the context in which particular elements are positioned over.
The 3D ConvNet is particularly helpful in characterizing
actions and motion in general within the trailers. Finally,
the MLP performs the direct mapping of audio (in the form
of Mel-Frequent Cepstral Coefficients) into genres.

For illustrating how each fine-tuned ConvNet learns
different aspects from the movie trailer, we show positive-
class sensitivity heat maps in Figure 1. The frame in the
first column was extracted from the movie “Battlefield”,
and it depicts an aircraft carrier in the middle of the ocean.
The following frames show the sensitivity to the positive
class (the action genre) as indicated by each model. For
instance, the model pre-trained on the Places dataset is very
sensitive to the environment, associating the positive class
to global aspects from the scene (note the sensitivity to
the ocean and sky). Conversely, the model pre-trained on
ImageNet is particularly focused on relevant objects, being
mostly invariant to the background. Finally, one can see
that the GoogleNet trained from scratch on LMTD considers
both local and global features, being sensitive to the spatial
disposition of elements within each frame. We found that
when the convolution layers are locked and the fine-tuning
is performed only in the fully-connected layers, the learning
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Original Frame ImageNet Places LMTD

Fig. 1. Positive-class sensitivity analysis following the general procedure described in [23]. The original frame is presented in the left, followed by
three heat maps: GoogLeNet pre-trained on ImageNet and fine-tuned on LMTD, GoogLeNet pre-trained on Places and fine-tuned on LMTD, and
GoogLeNet trained on LMTD from scratch. A strong sensitivity to the positive class is indicated by warm colors, whereas cold colors represent low
sensitivity.

is suboptimal. Considering that LMTD is a large dataset, we
fine-tuned all layers of the original architecture with confi-
dence that it would not lead to overfitting. Notwithstanding,
we did use much smaller learning rates so we would not
distort the pre-trained weights too much (or too quickly).

Considering that each network model captures distinct
(albeit complementary) aspects from the frames/scenes of a
movie trailer, CoNNeCT employs a post-processing learning
step which uses the predictions from each model as input
to an SVM classifier to generate the final genre predictions.
Instead of going for an ensemble strategy of majority voting
among the models, we show in Section 5 that this post-
processing learning step is much more accurate in predict-
ing genres. We detail the post-processing learning step in
Section 3.3.

3.1 Pre-Processing Step

We performed multiple procedures to collect, clean, and
augment the data from LMTD prior to the training/tuning
of each model. The three models based on the GoogLeNet
architecture make use of the same set of frames extracted
from individual scenes from each trailer. First, we employ
the shot detection algorithm described in [19] for detecting
the set of scenes that a trailer contains. Next, we identify
the keyframe (central frame) of each scene, and we collect it
along with 20% of the frames in that same scene, in order
to have diversity within the collected data without resorting
to all frames in a trailer. Regarding the 3D ConvNet, we
collected a sequence of 16 frames from each detected scene.
If a scene has 32 frames or more, we split it into two
instances, each of which containing 16 frames. If a scene has
less than 16 frames, we discard it and continue to process
the next scenes. Each instance in the 3D ConvNet is thus a
sequence of 16 frames, and multiple instances may refer to
the same movie scene whereas short scenes are discarded.

All frames are downsized to 256 × 256, and then ran-
domly cropped during training to 224 × 224 and eventu-
ally mirrored (uniform probability). Considering that we
use colored images, the 2D ConvNets have inputs of size
224×224×3 (height, width, color channels), whereas the 3D
ConvNet inputs are of size 112×112×3×16 (height, width,
color channels, frames). Height and width were reduced 2-
fold in the 3D model due to the available computational
resources.

For processing the audio of the videos, we extracted
the Mel Frequency Cepstral Coefficients (MFCCs) from each

trailer scene. Since MFCCs extraction generates 13 variable-
size feature vectors, we computed four different statistics
from each one, namely the minimum and maximum values,
standard deviation, and average. The combination of the
statistics obtained from each of the 13 vectors and of the two
corresponding deltas resulted in a single 156-long vector
(13× 4× 3), which is then used as input to the Multi-Layer
Perceptron.

3.2 CoNNeCT Models
With the goal of identifying particular elements within
the movies frames, CoNNeCT makes use of a GoogLeNet
model [10] that is pre-trained on the ImageNet dataset
[24]. ImageNet (ILSVRC12) is the well-known image dataset
that comprises 1.2 million images divided in 1.000 classes,
being widely used for computer vision tasks such as object
classification. In the ImageNet Large-Scale Visual Recogni-
tion Challenge 2014 (ILSVRC14), a GoogLeNet based model
was responsible for establishing the state-of-the-art in object
classification [10].

CoNNeCT employs the GoogLeNet pre-trained on the
ImageNet dataset and fine-tuned on LMTD. The fine-tuning
is executed in batches of 128 images for 10 epochs. The
initial learning rate is set to 1 × 10−4 and it decreases 10-
fold whenever the validation loss plateaus.

The second model is an implementation of the
GoogLeNet architecture focused on extracting features
based on scenes and environments. For such, this model
is pre-trained on the Places dataset [25] and fine-tuned on
LMTD. Places is a scene-centric dataset that contains over
2.4 million labeled images of scenes divided in 205 classes.
The size of batches, epochs and learning rate strategy are
the same as previously described.

Rather than using a pre-trained model, the third CoN-
NeCT model is a GoogLeNet trained on LMTD from scratch.
The main goal of this model is to capture information that
relates the movie frames with genres regardless of any
previous knowledge other than the movie itself. We run it in
batches of 128 images for 20 epochs, with the initial learning
rate set to 1× 10−3, with the same decreasing policy as the
previous networks.

In order to extract motion features from the trailers,
CoNNeCT comprises a 3D ConvNet based on the C3D
architecture [26], [27], which is more suitable for spatiotem-
poral feature learning than conventional 2D ConvNets. This
model is pre-trained on the Sports-1M dataset [13] and fine-
tuned on LMTD with batches of 32 frame-sequences (16
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frames per sequence) executed for 20 epochs, initial learning
rate of 1× 10−4, with the same decreasing policy as before.

The last CoNNeCT model is an MLP that receives as
input the MFCCs audio features. The MLP architecture
is 156 × 312 × 312 × 4 with hyperbolic tangent neurons,
trained with Nesterov’s Accelerated Gradient with an initial
learning rate of 0.01 and dropout of 50%.

3.3 Post-Processing Learning Step

The final step of CoNNeCT is to perform the concatenation
of the predictions from each of the five models. Since the
models generate predictions in different granularities (per-
frame or per-scene), we need to put them into the same
granularity (per-scene). The three GoogLeNet-based models
are the only ones to provide per-frame predictions, so we
average the predictions for all frames in the same scene.

Once all predictions are scene-based, we noticed that
averaging over scenes in order to generate per-trailer pre-
dictions would lead to severe information loss. Hence, we
divided the trailer in p parts with uniform frequency of
scenes, averaging the predictions from those scenes located
in a same part. After this procedure, the final feature set
contains a total of c × p × 5 features (number of classes ×
number of parts × number of models), which serve as input
to an SVM classifier. Since each instance is now a set of
genre probabilities from a single movie that vary in time, the
classifier can learn the function that maps such features to
the desired genre, properly addressing the issues of learning
intangible information from frames.

4 EXPERIMENTAL METHODOLOGY

To validate the hypothesis that movie trailer genres can be
properly identified by CoNNeCT , we need a labeled movie
trailer dataset. Zhou et. al. [18] describe their own movie
trailer data, though it is not made publicly available for the
research community. Moreover, 54% of the trailers in their
dataset belong at the same time to three out of the four
genres, the same genres evaluated by our research. Their
reported accuracy values consider a correct classification
whenever their approach classifies the movie trailer as be-
longing to any of the labeled genres, which means movies
with 3 genres has a 75% probability of being correctly
classified simply by chance.

We have developed a novel movie trailers dataset called
LMTD (Labeled Movie Trailer Data), which comprises more
than 3500 trailers whose genres are known, and we make
it publicly available for the interested reader1. The ≈ 3500
movie trailers are distributed over 22 different genres. To
avoid the problems identified in the work of Zhou et. al. [18],
we have selected a subset of 999 movie trailers from LMTD,
as presented in Table 1, where each trailer belongs to one
of 4 disjoint genres (action, comedy, drama, or horror). Note
that this subset is a consequence of i) restricting to 4 genres
among the 22 existing ones; and ii) selecting all disjoint
movie trailers from the 4 selected genres. This subset is
called LMTD-4. The training, validation, and test sets were
chosen randomly among the available trailers.

1. http://www.inf.pucrs.br/gpin/

TABLE 1
LMTD-4 dataset.

Genre Training Validation Test Total

Action 160 15 90 265
Comedy 160 15 95 270
Drama 160 15 90 285
Horror 114 10 55 179

Frames 1,425,600 132,000 792,000 2,349,600

To validate our results we compare CoNNeCT with
the state-of-the-art methods in movie genre classification,
namely Gist [16], CENTRIST [17], w-CENTRIST [18], and
two approaches based on low-level features extraction [19],
[20]. For Gist, CENTRIST, and w-CENTRIST we set the
same parameters as defined in [18], namely: BOVW of 200
codewords and 100 bin histogram with t = 3. We replaced
the k-NN classification performed by the authors by an SVM
classification (RBF kernel, γ = 0.1 and C = 1), considering
the vast improvement achieved in validation data.

The low-level features extraction approach presented
by Rasheed et al. [19] is not directly comparable to other
methods since its main goal is not to classify genres but to
understand the relationship between features and genres.
Therefore, we employed the same strategy than for the
previous methods, which is performing SVM classification
with RBF kernel, γ = 0.1, and C = 1. For the second
low-level features based approach, proposed by Huang and
Wang [20], we set the parameters as suggested by the
authors in their experimental analysis: SAHS with HMS set
to 50 and HMCR set to 0.99; SVMs with RBF kernel and
parameters γ and C tuned in the validation set consider-
ing a grid of 6x6 combinations between [2−4, ..., 21] and
[2−2, ..., 23].

We also set as baseline approaches each individual net-
work that is part of CoNNeCT , with the goal of verifying
the hypothesis that multiple models capable of learning
distinct features would outperform any single model be-
ing used individually. Our last baseline is a modification
of CoNNeCT that performs ensemble-like classification by
aggregating the predictions of the multiple models instead
of performing the post-processing step with SVMs. Our goal
here is to verify whether making use of the predictions from
each model to feed an SVM in a post-processing learning
step is a more robust approach than aggregating predictions
in a weighted vote scheme. We refer to each individual
model in CoNNeCT as follows: G-ImageNet, G-Places, G-
LMTD, 3D ConvNet, Audio MLP, and we refer to the
CoNNeCT approach that performs ensemble classification
instead of the post-processing step as E-CoNNeCT .

5 RESULTS AND DISCUSSION

We first analyze the performance of each network com-
prised by CoNNeCT when used individually to predict
genres. In Table 2, we show the performance of each net-
work in the validation set, averaging their predictions from
frames/scenes to the entire movie trailer. Note that we
also present the performance of E-CoNNeCT , which is the
modified version of CoNNeCT that does not perform the
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post-processing learning step. In E-CoNNeCT , we aver-
age the frame-based predictions generated by G-Places, G-
ImageNet, and G-LMTD, to the scene granularity, and then
we average the aggregated scene predictions with those
generated by the 3D ConvNet and Audio MLP. Finally, we
average the predictions from scenes to trailers.

Table 2 shows that the overall accuracy of each indi-
vidual network is quite low, with G-Places outperforming
the other networks. It also shows that combining the mul-
tiple models into a single scheme and weight-averaging
the results does not provide the best overall accuracy (E-
CoNNeCT reaches 42% versus 44% for G-Places). We argue
that by aggregating the predictions from the distinct models
we lose important information for defining genre. Our claim
is that genre should be defined based on the relationship
among these distinct predictions, and not based on their
aggregation.

TABLE 2
Per-genre and overall accuracy in the validation set. Predictions are

averaged from frames/scenes to trailers.

Network Action Comedy Drama Horror Overall accuracy

G-Places 0.60 0.47 0.40 0.2 0.44
G-ImageNet 0.47 0.33 0.27 0.1 0.31
G-LMTD 0.47 0.4 0.27 0.1 0.33
3D ConvNet 0.47 0.53 0.40 0.2 0.42
Audio MLP 0.33 0.53 0.13 0.2 0.31
E-CoNNeCT 0.4 0.53 0.40 0.30 0.42

For backing up that claim, we show in Table 3 the
performance of each individual network followed by the
post-processing learning step with SVMs. For the frame-
based networks, we average the predictions from frames
to scenes, and then we divide each trailer in 12 parts2

with uniform frequency of scenes. Next, we average the
predictions from scenes to parts, resulting in 48 features (4
predictions × 12 parts) per trailer, which are used as input
to a SVM classifier with RBF kernel, γ = 1 and C = 1
(default values). The same rationale is applied to the scene-
based networks, averaging predictions from scenes to parts
and then performing SVM classification. The final number
of features that are used as input to the SVM classifier is
240 (48 × 5 models). We also show in Table 3 the CoN-
NeCT performance, so we can evaluate whether predictions
from multiple models improve over the individual ones.

TABLE 3
Per-genre and overall accuracy in the validation set. Predictions are

averaged from frames/scenes to parts followed by the post-processing
learning step with SVMs.

Network Action Comedy Drama Horror Overall Accuracy

G-Places 0.66 0.80 0.73 0.70 0.73
G-ImageNet 0.73 0.80 0.73 0.70 0.75
G-LMTD 0.47 0.6 0.67 0.6 0.58
3D ConvNet 0.73 0.73 0.6 0.70 0.70
Audio MLP 0.53 0.80 0.47 0.20 0.53
CoNNeCT 0.87 0.80 0.87 0.80 0.84

Table 3 shows that the post-processing learning step
substantially improves the accuracy of all models (from

2. This value was selected based on the accuracy in validation data.
We found that values of 4 ≤ p ≤ 19 differ marginally in terms of
accuracy.

≈ 40% to ≈ 70%). Moreover, note that CoNNeCT substan-
tially outperforms the most accurate individual networks
(G-Places and G-ImageNet), showing an improvement of
≈ 10% by combining predictions from multiple models.
Figure 2 shows the effect of sequentially adding the predic-
tions of each model to the set that initially contains the G-
LMTD predictions. A given position in the x axis indicates
the model whose predictions are being added to the set of
predictions from the models on its left.
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Fig. 2. Per-genre test accuracy computed by sequentially adding pre-
dictions from the baseline models into the post-processing learning
step. From left to right: 1) 48 predictions from the G-LMTD model; 2)
48 predictions from the 3D ConvNet plus the previous 48 predictions
from G-LMTD; 3) 48 predictions from Audio MLP plus the previous 96
predictions; 4) 48 predictions from G-Places plus the previous 144; 5)
48 predictions from G-ImageNet plus the previous 192.

Note how the overall accuracy substantially increases
when sequentially adding more information from the net-
work models, confirming our hypothesis regarding the
benefits of extracting features of different aspects from the
frames/scenes. The drama genre, in particular, greatly ben-
efits from a multiple-model approach, going from ≈ 55%
to ≈ 90% of accuracy. Other interesting finding is the gain
of accuracy for the action genre when using a 3D ConvNet,
which makes sense considering that action movies can be
more naturally described by motion-based features. The
only genre that does not seem to benefit from knowledge
extracted by multiple models is horror, which only gains in
accuracy when adding audio features and scene informa-
tion, and has its accuracy decreasing when making use of
object-oriented features.

In our last analysis, we present the performance of all
baseline algorithms along with CoNNeCT in Table 4. Note
that CoNNeCT outperforms the current state-of-the-art in
13% of accuracy, showing once again the power of Con-
vNets in Computer Vision applications. Whilst the baseline
approaches struggle when predicting the drama genre, ob-
serve that CoNNeCT comfortably reaches 90% of accuracy,
an improvement of 23% over the second-best approach! Yet,
the downside is the horror genre, which is outperformed by
the work of Huang and Wang [20]. We are still not certain
of the reasons for CoNNeCT ’s lack of performance when
classifying horror trailers, but we believe that performing
feature selection over the set of 240 features may increase its
performance, albeit not by a great margin.

Our final remark is regarding scalability and adaptation
to multi-label classification: CoNNeCT can naturally perform
multi-label classification, which is not true for neither of
the baseline approaches. Moreover, adding extra classes
to the problem does not impact severely on CoNNeCT ’s
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TABLE 4
Per-genre and overall test accuracy of all baseline algorithms and

CoNNeCT .

Method Action Comedy Drama Horror Overall

Low-Level + SVM [19] 0.54 0.35 0.50 0.10 0.41
GIST + SVM [18] 0.57 0.61 0.31 0.40 0.48
CENTRIST + SVM [18] 0.58 0.55 0.47 0.37 0.51
w-CENTRIST + SVM [18] 0.55 0.54 0.44 0.35 0.49
One-vs-One SVM [20] 0.74 0.83 0.67 0.72 0.74
CoNNeCT [Ours] 0.89 0.92 0.90 0.70 0.87

computational cost. The work of Huang and Wang [20],
on the other side, would require 231 SVM classifiers to
recognize the full extent of genres in LMTD (22).

6 CONCLUSIONS

We presented a novel approach to learn genre from movie
trailers based on Convolutional Neural Networks (Con-
vNets), namely CoNNeCT . It recognizes disjoint movie
genres with 87% of accuracy, substantially surpassing the
current state-of-the-art approaches. CoNNeCT innovates by
combining predictions from multiple models in order to
address a semantic gap between the frame/scene granular-
ity and the movie granularity. This work has shown that
it is possible for multiple ConvNets to learn an intangible
feature such as movie genre even resorting to a weak
labeled dataset, in which frames were labeled according
to the overall movie genre. As future work, we intend to
investigate the movie genre domain under the perspective
of multi-label classification, eventually making use of the
entire set of 22 movie genres. Another interesting venue is
to investigate automatic approaches for labeling scenes in
order to avoid the weak-labeling issue previously described.
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