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Abstract—Imbalanced data sets originating from real world
problems, such as medical diagnosis, can be found pervasive.
Learning from imbalanced data sets poses its own challenges, as
common classifiers assume a balanced distribution of examples’
classes in the data. Sampling techniques overcome the imbalance
in the data by modifying the examples’ classes distribution.
Unfortunately, selecting a sampling technique together with its
parameters is still an open problem. Current solutions include
the brute-force approach (try as many techniques as possible),
and the random search approach (choose the most appropriate
from a random subset of techniques). In this work, we propose
a new method to select sampling techniques for imbalanced
data sets. It uses Meta-Learning and works by recommending
a technique for an imbalanced data set based on solutions to
previous problems. Our experimentation compared the proposed
method against the brute-force approach, all techniques with
their default parameters, and the random search approach. The
results of our experimentation show that the proposed method
is comparable to the brute-force approach, outperforms the
techniques with their default parameters most of the time, and
always surpasses the random search approach.

Index Terms—Meta-learning; Algorithm selection; Sampling
algorithms;

I. INTRODUCTION

Machine learning applications can range from classification
of modules in software as faulty to detection of cancer in
patients [1], [2]. What many of those applications have in
common is an imbalanced distribution of classes among their
examples. For instance, past data about patients that underwent
tests to discover whether they had cancer, are expected to have
a low ratio of cancerous to non-cancerous patients. Common
classifiers assume an even distribution of classes in the data, an
assumption that if not met may hinder learning [3]. Current
solutions to the problem of learning from imbalanced data
mainly fall into two categories: modifying the distribution of
classes in the data, and adapting existing classifiers’ algorithms
to deal with the imbalance.

Given an imbalanced data set, sampling techniques can be
employed to generate a new data set where the distribution
of examples in each class is more balanced. Over-sampling
either adds repeated examples from the minority class or
synthesizes from the available data. On the other hand, under-
sampling simply removes examples from the majority class.
Even though under-sampling techniques discard information
about the majority class, the loss may be compensated by the
reduction in necessary computational resources (less time to
train the models and less space to store the data). Moreover,

noisy and redundant instances when removed may even con-
tribute to a more robust data set. Given the aforementioned
reasons, under-sampling techniques have become largely used
in the context of imbalanced data sets [3].

The process of selecting a sampling technique and its
parameters to pre-process an imbalanced data set is still
problematic, with few solutions existing for it. A brute-
force search through all combinations of algorithms and their
parameters can find the best solution, as performed in [4],
[5]. Nonetheless, due to time constraints, a brute-force search
is not always feasible. Instead of using the brute-force ap-
proach, Tong et al. [[6] conceived an analytical method to find
an optimal configuration for a combination of the random
over-sampling and the random under-sampling techniques.
Although an analytical solution was devised, the method still
had to evaluate a number of configurations before selecting
the most appropriate configuration. Another possibility is to
choose the most suitable solution from a random subset of
algorithms and configurations (i.e., perform a random search).

In this work, we propose a novel way of selecting a
sampling algorithm and its parameters for an imbalanced data
set. The method relies on Meta-Learning (MtL), and it works
by recommending a solution to a new problem based on
stored solutions for previous problems (meta-data). In greater
detail, given a new imbalanced data set (which we call a
problem here), the most similar problem is retrieved from
the meta-data and its solution is recommended. MtL is a less
expensive solution when compared to the brute-force approach
and search methods. Once the knowledge is obtained by the
meta-learner, algorithms can be recommended for new prob-
lems without the necessity of empirically assessing different
candidate configurations as performed using search techniques
[7]]. It is worth mentioning that the MtL method has not been
investigated for the current problem, and the optimization of
under-sampling algorithms for imbalanced data sets is a task
that needs further investigation.

Seven well-known under-sampling algorithms were consid-
ered here for evaluation of the proposed method. For each
algorithm a range of parameters’ values were defined, totaling
491 possible variations of algorithms that can be recommended
for an input imbalanced problem. The proposed solution was
evaluated on 29 different classification problems and compared
to a brute-force approach, the random search method, and
also compared with the seven under-sampling algorithms using
their default values. The results showed that the recommen-



dation always surpassed the random search, outperformed the
algorithms using their default parameters most of the time,
and it was usually comparable to the brute-force solution.

This work is organized as follows. Section |lI| presents other
works related to the task of selecting/optimizing sampling
algorithms for imbalanced data sets. Section |LII| describes the
proposed MtL method. Section brings the experimental
methodology and presents the obtained results. Finally, in
Section [V] the conclusions and possible future works are
presented.

II. RELATED WORK

In this section, we briefly discuss the references that tried
to improve the process of pre-processing an imbalanced data
set via sampling techniques. This is achieved either through
the optimization of the sampling techniques parameters or
recommendation of a method.

In [4] Hulse et al. conduct a comprehensive study of the
impact of seven sampling techniques on 11 different classifiers
trained on 35 data sets. In their work, only three of the seven
sampling techniques were under-sampling techniques. Since
several values for the sampling parameters were utilized, a
total of 31 combinations of sampling techniques plus param-
eters were employed in their study. A brute-force approach
was used to determine the best combinations of classifiers
and sampling techniques for each data set, resulting in over a
million classifiers trained.

Cieslak and Chawla [5] believe that data are mostly mul-
timodal and sampling techniques should be applied locally
rather than globally. Hence, they devised a method that creates
a partition of the data, and for each member of the partition
it determines the best combination of sampling technique
plus its parameters. Again, a brute-force approach is used
to select the best parameters and the results of the proposed
technique (called Local Sampling) are compared to another
three sampling techniques (one under-sampling and two over-
sampling techniques), achieving better results.

Instead of applying the brute-force approach to find the
best parameters for the random under-sampling and the ran-
dom over-sampling techniques, Tong et al. [6] conceived an
analytical method to find optimal levels of random under-
sampling and random over-sampling for an imbalanced data
set. It employs Design of Experiments (DOE) and Response
Surface Methodology (RSM) to obtain the optimal levels of
sampling. Although an analytical solution was devised, in
order to construct the RSM model, several runs of a cross-
validated procedure have to be executed to obtain mean values
of the response variable (e.g. AUC) for various levels of
sampling. The new method (called S-RSM) was compared to
the default (set to balance the classes’ distribution) random
under-sampling and random over-sampling techniques, being
superior to both methods alone.

Recently, Loyola-Gonzélez et al. [8]] investigated the impact
of sampling techniques on contrast pattern classifiers. Their
experimentation included 20 sampling techniques (nine over-
sampling, eight under-sampling, and three hybrid methods),

two contrast pattern classifiers, and 95 imbalanced data sets.
The data sets were grouped according to their imbalance
ratio (number of majority examples / number of minority
examples), and based on their results they suggest a guide
for selecting sampling techniques given the imbalance ratio
of an imbalanced data set. In their future works section, they
plan to use data set intrinsic characteristics to select sampling
techniques instead of using the imbalance ratio.

The brute-force and the random search approaches comprise
most of the attempts to solve the problem at hand. However,
it is known that there is a vast number of combinations
of sampling algorithms and possible values for their hyper-
parameters. Thus, the application of these approaches on
the optimization of under-sampling algorithms may become
impracticable.

In the next section, we present the proposed method which
aims to provide an optimized under-sampling algorithm, for
an input imbalanced data set, in a less expensive way.

III. PROPOSAL

This work proposes an automatic methodology for recom-
mendation of an adequate under-sampling algorithm for an
input imbalanced problem. Meta-Learning handles the under-
sampling algorithm selection for imbalanced problems as a
supervised learning task. Figure [T] presents the architecture
of the proposed method. Each training example for MtL,
known as a meta-example, is composed of the characteristics
of a past imbalanced problem and information regarding the
performance achieved by a set of candidate under-sampling
algorithms on the problem. By using, as input, a set of such
meta-examples, a meta-learner can predict the most suitable
algorithm for a new problem based on its characteristics. MtL
is a less expensive solution when compared to the brute-
force approach and search methods [7]]. In fact, once the
knowledge is obtained by the meta-learner, algorithms can
be recommended for new problems without the necessity
of empirically assessing different candidate configurations as
performed using search techniques.

The MtL methodology includes (1) the generation of meta-
data regarding the performance of a set of under-sampling
algorithms on existing imbalanced data sets, and (2) the use of
the generated meta-data to predict an algorithm to pre-process
a new imbalanced data set. Both points will be described in
detail in the following sections.

A. Generation of meta-data

To obtain the meta-data, two types of operations are nec-
essary: i) execute the experiments on the available data sets
with the available algorithms and selected parameter settings,
ii) calculate a set of meta-features describing those data sets.
These procedures will be explained as follows.

Defining candidate algorithms: In this work, we adopted
seven well-known under-sampling algorithms to be considered
in the recommendation process. The name of each under-
sampling technique, together with a short description and a list
of its parameters is presented in Table|l} As each parameter of
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Fig. 1. Architecture of the proposed method.

each algorithm assumes several possible values, the number of
possible algorithm configurations becomes large. As we cannot
compute the performance of all possible algorithms, a subset
needs to be determined. The number of choices was defined
considering the trade-off between the quality of results and
computational requirements. On one hand, it is interesting to
have a large number of algorithms, allowing us to identify, in
every case, one that is close to the best possible algorithm.
On the other hand, if too many alternatives were admitted, the
computational demands to run all associated experiments and
collect the meta-data required for meta-learning could be too
high.

All techniques that use the k-NN algorithm (whose default
value is k = 3), adopted [2,15] as the range of k values.
From this range, we have selected 14 alternatives, following
an arithmetic progression with a factor of 1. Regarding the
KMUS technique, which uses the k-means algorithm (whose
default value k is equals to the size of the minority class),
it adopted positive multiples of the size of the minority
class as the interval of values (up to 5 times). From this
range, we have selected 5 alternatives, following an arithmetic
progression with a factor of 1. Those techniques that have
the m hyper-parameter (whose default value is the percentage
value where both majority and minority classes have the
same number of examples), adopted [0,80] as the interval
of values, where the value 0 means the default behavior.
From this range, we have selected 9 alternatives, following an
arithmetic progression with a factor of 10. Those techniques
that have the p hyper-parameter (whose default value is p = 2),
adopted the interval [1,5]. From this range, we have selected
5 alternatives, following an arithmetic progression with a
factor of 1. This totaled 491 candidate algorithms that can
be recommended to an input imbalanced problem. It is worth
mentioning that all parameters’ ranges previously outlined

were defined empirically.

Collecting performance data: To evaluate the quality of
a single combination of algorithm and parameters, a ten-
fold cross-validated resampling procedure repeated five times
was employed. For classification purposes, a Support Vector
Machine (SVM) with a Gaussian Kernel was adopted. The
SVM'’s parameters were held constant. C' had a fixed value of
1 throughout all problems, while ¢ had a fixed value computed
for each problem following the heuristic defined in [12]. When
dealing with imbalanced data sets, performance of a classifier
cannot be assessed solely based on accuracy. In a problem
where 99% of the examples belong to one class, predicting
all the examples to be part of the majority class would yield
an accuracy of 99%, which is clearly undesirable. Hence, we
created a weighted performance metric (W PC') to assess a
classifier’s performance:

WPC =0.05 x Acc+ 0.25 x AUC + 0.40
xFy; +0.15 x Spec 4+ 0.15 x NPV.

Where Acc stands for Accuracy, AUC for Area Under the
ROC Curve, Fj for the F; score, Spec for Specificity, and
NPV for Negative Predictive Value. NPV is the analog of
Precision for the negative (majority) class. The metric ranges
from O to 1, as it is a convex combination of other metrics
that also vary from O to 1. The objective is to maximize the
WPC.

The weights for the W PC metric were chosen empirically.
Recognition of the minority class was considered the most
important factor and a weight of 0.40 was given to the F}
score. Since the AUC is used in many previous works [4], [5]],
[6], 8], it was given a weight of 0.25. Although recognition
of the majority class is usually high in imbalanced problems,
in response to this, a weight of 0.15 was given to Spec
and NPV each. Finally, as Acc is not a suitable metric
for imbalanced problems, but widely adopted in the Machine
Learning community, it was given a weight of 0.05.

For the purpose of algorithm selection, a proper set of
meta-features, i.e., data set characteristics, need to satisfy the
following two conditions. First, it must extract useful infor-
mation to determine the relative performance of the individual
learning algorithms. Secondly, calculating them should not be
too costly. In other words, calculating the measures should
be cheaper than running the individual candidate algorithms,
otherwise, one might simply execute them as well. In this
work, we have used the meta-features described in [[13]], which
are listed in Table

(D

B. Prediction with the k-NN ranking method

The use of the k-NN ranking method to provide a rec-
ommendation of under-sampling algorithms for imbalanced
problems includes the following steps. First, calculating the
meta-features for the data set in question. Second, identifying
the k nearest neighbors among the existing data sets. Third,
retrieving the rankings of algorithms on the nearest neighbors
and use this information to make the recommended ranking.



TABLE I

THE NAME OF EACH UNDER-SAMPLING TECHNIQUE CONSIDERED IN THIS WORK, TOGETHER WITH A SHORT DESCRIPTION AND A LIST OF ITS

PARAMETERS.

Under-sampling Techniques

Technique Name

Short Description

Hyper-parameters

Edited Nearest
Neighbors (ENN or

For each majority class example, find its k-nearest neighbors
and classify it accordingly to them, breaking ties randomly. If

k: Number of neighbors.

Wilson’s Editing) || it is misclassified, remove it.
(9l
k-means Under- || Run a k-means algorithm on the majority class examples and | k: Number of centroids.

sampling (KMUS)

select the k centroids to represent it.

Most Distant (MD)
[10]

For each majority class example, compute its average distance
to the k-nearest minority class neighbors. Select m% of the
most distant majority examples.

k: Number of neighbors.

m: Percent of examples to
select from the majority
class.

Neighborhood For each example, find its k-nearest neighbors and classify | k: Number of neighbors.
Cleaning Rule || it accordingly to them, breaking ties randomly. For every
(NCL) [11]] misclassified example, either remove it if it belongs to the
majority class or remove its majority neighbors if it belongs
to the minority class.
NearMiss-1 (NM1) || For each majority class example, compute its average distance | k: Number of neighbors.
[10] to the k-nearest minority class neighbors. Select m% of the | m: Percent of examples to
closest majority examples. select from the majority
class.
NearMiss-3 (NM3) || For each minority class example, compute its k-nearest majority | k: Number of neighbors.
[10] class neighbors and select p < k of them to represent the | p: Number of majority class
majority class. examples to select from the
k neighbors.
Random Under- || Randomly selects m% examples from the majority class. m: Percent of examples to

sampling (RUS)

select from the majority
class.

MEASURES USED TO CHARACTERIZE DATA SETS (META-FEATURES).

TABLE I

Simple

The meta-features represent data characteristics of the data
set presented earlier. To determine the k nearest neighbors, the
distance between the meta-features of the data set in question
and all the others is calculated, and the k closest data sets are

Number of examples

Number of attributes

Ratio of the number of examples to the
number of attributes

Proportion of the attributes with outliers

Presence of outliers in the target

Statistical

vectors of meta-features.

Coefficient of variation of the target
(ratio of the standard deviation to the mean)

Sparsity of the target (coefficient of
variation discretized into three values)

Stationarity of the target (the standard
deviation is larger than the mean)

Average absolute correlation between
numeric predictor attributes

Average dispersion gain

dist(a,b) =

where a = (a1,a2,...,ap) and b = (b1, bo, ..

selected. The distance function (dist) implemented was the
Euclidean distance, defined as:

IV. EXPERIMENTS AND RESULTS

In this section, we present the experiments that evaluated
the proposed solution on the set of 29 classification problems
(see column one of the Table [III), totaling 29 meta-examples
(one for each problem). The 29 data sets were collected
from three different sources: the PROMISE repository [14],
the KEEL-data set repository [15], and the UCI Machine
Learning repository [16]. The employed data sets from the
PROMISE repository have been cleaned by Shepperd et al.

., bp) are the



[17]. For data gathered from the KEEL-data repository and
the UCI Machine Learning repository, we cleaned them by
first removing repeated instances, followed by removal of
inconsistent instances (same values for the predictors but
different class).

All the under-sampling algorithms were implemented under
the R environment [18]]. The model training process, including
the cross-validated resampling procedure, was conducted using
the caret [19], and the kernlab (for the SVM) packages [12].
The MtL framework was implemented in Python, and the
communication with the R code was established via the rpy2
package [20].

The proposed solution was evaluated by following a leave-
one-out cross-validated (loocv) resampling procedure. At each
step of the leave-one-out procedure, one meta-example was
left out (considered as input problem) to evaluate the imple-
mented prototype, and the remaining 28 meta-examples were
considered in the meta-data to be selected by the meta-learner.
Thus, the meta-learner recommend, for the input problem,
the best algorithm (with highest W PC') adopted to solve the
most similar (we used the k-NN with k£ = 1) meta-example
regarding the input problem. To assess the performance of
the proposal’s recommendation, the recommended algorithm is
executed on the input problem and its performance is evaluated
using the W PC' metric, presented in Equation

Table presents the W PC' values of the proposal and
other three approaches. The first column, from the Algorithms
area, presents the average W PC' values achieved by the best
algorithms found by a brute-force approach for each problem.
In other words, the results presented in this column represent
the best possible W PC' values for each problem.

The second column presents the W PC' values achieved
by the proposed approach. The third column, named Default,
presents the best W PC' value reached by the seven algorithms
when configured with their default parameters. Finally, the
fourth column presents the W PC' values reached by a random
search approach using 50 iterations. Both brute-force and
random search algorithms are implementations from the Scikit
Learn library [21]].

The values, presented in Table which are in bold mean
that the values are equal to the results reached by the brute-
force approach; and the values which have the symbol (V)
mean that these values were overcome by the counterparts.
As it can be seen in Table the results achieved by
the algorithms recommended by the proposal overcame all
results reached by the random search approach. Besides, the
proposal overcame the algorithms using default parameters
in 23 classification problems, lost in only 4 and drew in 2
problems. In general, the results obtained by the proposal were
close to the global optimum, and in 8 out of the 29 problems
the global optimum was reached.

The results show that the task of choosing an adequate
under-sampling algorithm for an imbalanced problem can be
solved using the proposed approach. The proposal reduces the
human intervention on this task, automatically providing an
adequate algorithm for the input problem.

V. CONCLUSIONS

In this work, a novel methodology to select a sampling
technique for an imbalanced data set was proposed. The
methodology not only addresses the problem of selecting a
sampling technique but also of defining its parameters. It
works by recommending a sampling technique for an imbal-
anced data set according to solutions that worked well for
previous problems (the meta-data).

The results of our experimentation showed that our method
was comparable to the brute-force approach, surpassed the
sampling algorithms with their default parameters most of the
time, and always outperformed the random search.

Once the meta-data is built, the proposed method has the
advantage of finding a solution in linear-time (on the size of
the meta-data). Disadvantages to the proposed method include
the time to build the meta-data, and the fact that solutions that
were never optimal for any previous problem will never be
recommended. Hence, the necessity of building a large meta-
data from the outset.

Here, we considered only under-sampling techniques to
assess the proposed method. However, the methodology could
be easily extended to include over-sampling and hybrid tech-
niques.

Future work include the refinement of the recommendation
process. Instead of recommending a single solution based on
the most similar problem in the meta-data, the system could
recommend a combination (or sequence) of techniques to be
applied to a new problem.
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