
Markov Decision Processes Specified by
Probabilistic Logic Programming:

Representation and Solution
Thiago P. Bueno, Denis D. Mauá, Leliane N. de Barros

Instituto de Matemática e Estatı́stica
Universidade de São Paulo

Rua do Matão, 1010
São Paulo, SP, Brazil

{tbueno,ddm,leliane}@ime.usp.br

Fabio G. Cozman
Escola Politécnica

Universidade de São Paulo
Av. Prof. Mello Moraes, 2231

São Paulo, SP, Brazil
fgcozman@usp.br

Abstract—Probabilistic logic programming combines logic and
probability, so as to obtain a rich modeling language. In
this work, we extend PROBLOG, a popular probabilistic logic
programming language, with new constructs that allow the
representation of (infinite-horizon) Markov decision processes.
This new language can represent relational statements, including
symmetric and transitive definitions, an advantage over other
planning domain languages such as RDDL. We show how to
exploit the logic structure in the language to perform Value
Iteration. Preliminary experiments demonstrate the effectiveness
of our framework.

Index Terms—probabilistic planning, Markov decision process,
sequential decision making, probabilistic logic programming.

I. INTRODUCTION

Successfully solving real-world probabilistic planning prob-
lems relies on representing and manipulating structured knowl-
edge involving relations, recursion and context-dependent in-
formation. This is usually achieved by specifying the transition
model by some sort of relational dynamic Bayesian network
[1], thus excluding the explicit representation of symmetric
and transitive definitions of ground predicates. For example,
suppose that a person has a prior probability of 0.2 of buying
a certain product, but if one or more of his or her trustees has
also bought the product, then the probability increases (syntax
and semantics defined later):

buys(X)← aux1. P(aux1) = 0.2

buys(X)← trusts(X,Y), buys(Y), aux2. P(aux2) = 0.3

These rules and assessments induce a probabilistic model
where the probability of buys(ANN) depends on buys(BOB)
and vice-versa if one trusts each other. Moreover, the probabil-
ity of buys(BOB) can depend on buys(JOHN), even if BOB does
not trust JOHN directly. This type of symmetric and transitive
knowledge can induce cycles in the transition and reward
models of a Markov Decision Process (MDP) and therefore
cannot be modeled straightforwardly with standard planning
languages such as PPDDL [2] and RDDL [1].

Probabilistic logic programming extends logic programming
languages with random variables, thus allowing the specifi-
cation of complex probabilistic distributions over the models
of a logic program. Some examples include PRISM [3], ICL
[4], BLOG [5], DDC [6], CLP(BN) [7] and PROBLOG [8].
These formalisms inherit from their logical counterparts the
ability to represent relational knowledge, often allowing the
description of symmetric and transitive definitions, typical of
cyclic feedback systems. PROBLOG is particularly interesting,
as it has a simple and yet powerful syntax and semantics,
and counts with an efficient toolset of inference techniques,
implemented in an open-source package1.

In this work, we develop MDP-PROBLOG, a probabilistic
programming framework, based on PROBLOG, that can be
used to represent and solve probabilistic planning problems
with rich domains, including the representation of cyclic
ground models. While the use of probabilistic logic pro-
gramming languages for planning is not novel [6], [9], our
framework provides a simpler syntax and a more clear seman-
tics than existing proposals. To solve an MDP in our frame-
work, we combine standard Value Iteration [10] with state-
of-the-art techniques developed for PROBLOG; most notably,
the reduction of inference task to weighted model counting
[11] over a weighted propositional formula that represents
PROBLOG’s ground logic program with weights associated
with its probabilities.

The paper starts with some background knowledge on
probabilistic logic programming and probabilistic planning, in
Section II. We then define our description language in Section
III, and show how to take advantage of PROBLOG capabilities
to perform Value Iteration. In Section IV we discuss empirical
results over an extended version of the viral marketing domain
[12], as well as the sysadmin domain, a more traditional
probabilistic planning problem [13]. Finally, we present a
discussion of related work and how to address some interesting
venues for further development in Sections V and VI.

1http://dtai.cs.kuleuven.be/problog/

II. BACKGROUND

A. Probabilistic Logic Programming

Syntax. We assume a fixed vocabulary of relations, log-
ical variables and constants. An atom is of the form
r(X1, . . . , Xn), where r is a predicate of arity n, and each Xi

is either a constant or a logical variable. The grounding of a
predicate is all the atoms derived by the substitution of logical
variables by constants, therefore a ground atom contains only
constants. A probabilistic fact is of the form θ :: f , where
θ ∈ [0, 1] and f is a ground atom; it represents a probability
assessment P(f) = θ. A ground probabilistic logic program is
a triple Lp = (At, Fp, R) where:

(i) At is a finite set of ground atoms;
(ii) Fp is a finite set of probabilistic facts;

(iii) R is a finite set of normal logic rules2 of the form
h :− b1, ..., bm, not(bm+1), ..., not(bn).,

where h ∈ At \ Fp is the head, and bi ∈ At forms the
body.

Semantics. We adopt Sato’s distribution semantics [14],
which specifies a distribution over logic programs induced by
joint realizations of the probabilistic facts. The probabilistic
facts are assumed to be stochastically independent. Every
realization (total choice) of probabilistic facts induces a logic
program L which includes the rules in the original program
and the probabilistic facts assigned “true” (i.e., probabilities
are discarded). For Fp = {θ1 :: f2, ..., θk :: fk} we have:

P(L|Lp) =
∏
fi∈L

θi
∏

fi∈Fp\L

(1− θi). (1)

The interpretation is that each probabilistic fact θ :: f appears
in a logical program with probability θ. The assumption
of independent probabilistic facts is not restrictive, since
probabilistic logic programs can represent (possibly with the
inclusion of additional atoms) any distribution over binary
variables [15].

Success probability. The semantics of a logic program is
given by its well-founded semantics [11]. We assume that each
realization of probabilistic facts induces a logic program with
a complete (i.e., two-valued) model. The success probability
of a query q ∈ At is:

P(q|Lp) =
∑
L:L|=q

P(L|Lp), (2)

where L |= q denotes that q is true in the well-founded model
of L.

B. Probabilistic Planning

MDP. A Markov Decision Problem [10] is defined by the 5-
tuple M = (S,A, T ,R, γ) where:

(i) S is a finite set of completely observable states.
(ii) A is a finite set of actions.

2Although only facts are annotated with probabilities in our definition, a
probabilistic rule θ :: h :− b1, not(b2). is allowed, since it would just be a
syntactic sugar for h :− b1, not(b2), aux. and θ :: aux.

(iii) T : S × A × S → [0, 1] is a transition model such that
T (s, a, s′) = P(s′|s, a). Note that function T satisfies
the first-order Markovian assumption, i.e., the next state
s′ is independent of all past states given the current state
s and action a to be executed.

(iv) R : S × A → R is a reward model that represents the
immediate return of the execution of an action in the
current state.

(v) γ ∈ [0, 1] is the discount factor for future returns.
The objective of solving an MDP is to select a policy

π : S → A that maximizes the expectation of a utility function
defined over a sequence of returns 〈rt〉t=0,...,H induced by
state transitions from an initial state s0. In the particular case
where H → ∞, i.e., an MDP with infinite horizon, it is
commonplace to define this utility function as the discounted
sum of future returns: Eπ [

∑∞
t=0 γ

trt | s0].

Value function. The value function of a state s ∈ S w.r.t. a
policy π is defined by the function Vπ : S → R such that:

Vπ(s) = R(s, π(s)) + γ
∑
s′∈S

P(s′|s, π(s))Vπ(s′). (3)

Bellman optimality. The Bellman optimality theorem shows
that an infinite-horizon discounted MDP with 0 ≤ γ < 1 admits
an optimal value function V ∗ such as for all s ∈ S:

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

P(s′|s, a)V ∗(s′)

}
. (4)

Factored state representation. In a factored state representa-
tion a state s is described by a set of state fluents x1, ..., xn. As
a consequence of the conditional independence of state fluents
of next state given current state and action, the transition
probability distribution P(s′|s, a) factorizes as follows:

P(s′|s, a) =
n∏
i=1

P(x′i|x1, ..., xn, a). (5)

III. MDP-PROBLOG

In this work we propose an extension of the probabilis-
tic programming languages PROBLOG [8], [11] and DT-
PROBLOG [9] to represent and solve probabilistic planning
problems modeled as infinite-horizon discounted MDPs. In this
section we first define the representational language and then
present a simple way of solving an MDP by means of dynamic
programming built on top of PROBLOG inference mechanism.

Throughout this section we use an extended version of the
viral marketing decision problem [9], [12] to illustrate
the language concepts. The original problem is to decide
for which individuals of a known social network it is worth
marketing a product, given the costs and rewards involved
in a marketing process and the fact that a person might buy
the product after being marketed or because he or she trusts
someone who already bought it. In our version, we turned the
episodic decision problem into a sequential decision problem
by adding a transition that models a delayed influence of
marketing.

A. Language definition

Syntax. An MDP-PROBLOG program is a valid PROBLOG
program defined by the triple LMDP = (At, Fp, R) where:

(i) At is a finite set of atoms partitioned in
• SF : a finite set of state fluents;
• A: a finite set of action predicates;
• U : a finite set of utility attribute predicates.

(ii) Fp is a finite set of auxiliary probabilistic facts.
(iii) R is a finite set of rules partitioned in

• Tr: finite set of transition rules;
• Rr: finite set of reward rules.

In general terms, the syntax of a MDP-PROBLOG program
is based on the syntax of PROBLOG programs, but some
restrictions are necessary to explicitly describe an MDP. First,
we define special purposes predicates for declaring state
fluents, actions and utility predicates. Second, we restrict
the probabilistic logic rules so as to attend to the form of
state-transition distribution programs in order to represent
the transition and reward models. In addition, auxiliary facts
can be defined as intermediate atoms to help composing the
transition and reward rules or to define invariant conditions.

State fluents. In order to define the state variables x1, ..., xn
that represent the factored state s ∈ S of an MDP, we introduce
the reserved predicate state_fluent/1. Such a predicate
should have a single argument representing some state variable
xi. Optionally, one can compactly define all the set of state
variables by means of intentional rules restricting the range
of the logical variables in the head by qualifiers atoms in
the body. Figure 1 illustrates this possibility for the viral
marketing domain.

person(bob). person(ann). person(john).
state_fluent(marketed(P)) :- person(P).

Fig. 1. State fluents for a viral marketing problem: the state variable
represented by the predicate marketed(P) indicates that some person P
has been marketed in a given state..

Action fluents. In order to define the available actions a ∈ A,
we introduce the reserved predicate action/1. Such a pred-
icate should have as its only argument an atom representing
some action. As in the case for the state fluents, one can
optionally use intentional rules to compactly define the set
of actions. Figure 2 illustrates a possible action definition for
the viral marketing domain.

action_fluent(market(L)) :- subset([bob,ann,john],L).

Fig. 2. Action predicates for a viral marketing problem: the action
atom market(L) represents the action of marketing to a subset L of
individuals of the network.

Utility predicates. The reward model R is speci-
fied using special-purpose utility attributes of the form
utility(ui,ri) where ui is a state fluent or an action
predicate such that ri is a numerical value of reward or cost,
respectively. The set of all utility attributes U represents the

overall immediate return of an action executed in the current
state. Optionally, intentional rules are allowed to qualify and
restrict variable terms in predicate ui or in real value ri
through Prolog’s arithmetic mechanism. Figure 3 illustrates
a possible definition of costs and rewards for a viral
marketing problem.

utility(buys(P,1), 5) :- person(P).
utility(market(L), Cost) :- subset([bob,ann,john],L),

length(L,S), Cost is -0.75*S.

Fig. 3. Utility predicates for a viral marketing problem: if a person
buys, an immediate reward of 5 is given; for each possible action of marketing
to a list of people its cost is proportional to the length of the list.

State-transition distribution programs. Because probabilis-
tic logic programs encode distributions, we can use them to
represent the state-transition distributions necessary for the
definition of the transition function T of planning problems.
To do so, we increment the arity of atoms in the probabilistic
logic program by introducing labels t and t+1 in order to de-
fine the subsets Att and Att+1, such that Att∩Att+1 = ∅ and
atoms in Att never appear in the head of rules. Consequently,
by restricting the probabilistic program in this particular way,
we define a two-time slice transition in which the atoms in
Att represent the current state fluents (or derived predicates)
and possible actions, and the atoms in Att+1 represent the
successor state fluents (or derived predicates).

In Figure 4 and Figure 5 we present an example
of such scheme for set of rules Tr and Rr describ-
ing the state transition and reward models of a viral
marketing domain. Note that the set of atoms At
is partitioned by the probabilistic rules into the sub-
sets Att = {marketed(P,0),market(L,0)} and
Att+1 = {marketed(P,1),buys(P,1)}. Note that
other atoms such as trusts(P,P2), marketed_before,
buy_from_marketing and buy_from_trust are sim-
ply auxiliary or non-fluent atoms and need not to be considered
in the time partition of the set At.

0.5::marketed_before.
marketed(P,1) :- market(L,0), member(P,L).
marketed(P,1) :- market(L,0), not(member(P,L))

marketed(P,0), marketed_before.

Fig. 4. State transition rules for the viral marketing problem:
marketed(P,0) and market(L,0) are the current state fluents and
actions respectively, marketed(P,1) are the next state fluents. The first rule
defines that person P is deterministically marketed at time t+1 if a marketing
action is targeted at P at time t. Second rule defines a stochastic marketing
effect at time t + 1 if a person P was not market at time t but has been
marketed before. Auxiliary atom marketed_before sets the probability
of this residual effect.

Semantics. The semantics of an MDP-PROBLOG program
is defined in terms of the dependency graph of the ground
program augmented by implicit value function nodes. In
Figure 6 we show the ground dependency graph for a viral
marketing problem consisting of only two individuals in the
social network. The graph encodes the necessary dependencies
to compute successive approximations of the expected future

0.2::buy_from_marketing(P) :- person(P).
0.3::buy_from_trust(P) :- person(P).
buys(P,1) :- marketed(P,1), buy_from_marketing(P).
buys(P,1) :- trusts(P,P2), buys(P2,1), buy_from_trust(P).

Fig. 5. Reward rules for the viral marketing domain: buys(P,1)
represents the fact that a person P buys the product after being mar-
keted or because someone P trusts bought the product. Each case has
a corresponding probability given by the auxiliary probabilistic facts
buy_from_marketing and buy_from_trust. Auxiliary predicate
trusts(P,P2) helps define the social network by means of topology
invariants not shown in the example.

returns by means of solving the following episodic decision-
theoretic problem:

maxa∈A

{∑
U
riP(ui|Lp; s)

}
, (6)

where U is the set of all utility predicates ui associated with its
immediate return ri, i.e. utility(ui, ri)∈ U , and s is the
current state observed as evidence in the probabilistic program.

Formally, the semantics of an MDP-PROBLOG program
is that solving the episodic decision-theoretic problem in
Equation 6 is equivalent to solving a Bellman’s backup for
state s. Therefore, running the probabilistic program iteratively
with updated value function utility nodes for every s ∈ S,
the solver approximates an optimum solution of the infinite-
horizon MDP by means of dynamic programming.

marketed(p1,0)

marketed(p2,0)

market(p1,0)

market(p2,0)

marketed(p1,1)

marketed(p2,1)

buys(p1,1)

buys(p2,1)

trusts(p1,p2)

trusts(p2,p1)

s1

s2

s3

s4

Value Function

Transition

Transition

Fig. 6. Ground dependency graph encoding the transition and reward models
with implicit value function nodes for the viral marketing domain for a
two-individuals social network. The atoms marketed(.,t), t = 0, 1, cor-
respond to state fluents and market(.,0) correspond to actions. Auxiliary
predicates trusts(.,.) and buys(.,1) help define the reward model.
Darkened nodes have utility attributes associated. The implicit value function
atoms correspond to the _sj_ nodes, j = 1, .., 4. Thick arrows correspond
to the functionally determined dependencies between next-state fluents and
state labels. Dashed edges represent false values and normal edges represent
true values. Note the cyclic dependency between atoms buys(p1,1) and
buys(p2,1).

It is important to note that the implicit value function nodes
are not integral part of the user-defined probabilistic program
used as input, but is automatically added by the solver in the
internal representation so as to handle the approximations of
the value function V (i+1)(s).

In Figure 7 we show an example for the viral
marketing problem with just two individuals, hence with
only two state variables and 4 state labels.

s1 :- not(marketed(p1,1)), not(marketed(p2,1)).
s2 :- marketed(p1,1), not(marketed(p2,1)).
s3 :- not(marketed(p1,1)), marketed(p2,1).
s4 :- marketed(p1,1), marketed(p2,1).
utility(_s1_, γV (i)(s1)). utility(_s2_, γV (i)(s2)).
utility(_s3_, γV (i)(s3)). utility(_s4_, γV (i)(s4)).

Fig. 7. Definition rules and utility predicates of value function nodes for a
viral marketing problem: it specifies the value function of states s1,
s2, s3 and s4 given the corresponding definitions composed of state fluents
marketed(p1,1) and marketed(p2,1).

Equivalence of MDP-PROBLOG and Bellman’s backup.
To show this equivalence, we first note that R(s, a) can
generally be decomposed as a sum in factored state rep-
resentation x1, ..., xn, so as R(s, a) =

∑n
i=1 U(xi) +

U(a), where U(.) corresponds to the utility values of
state fluents and action predicates in the program. Since
P(state_fluent(xi)|Lp; s) and P(action(a)|Lp; s) are
either 1.0 or 0.0, because these predicates are always observed
in each iteration, we can write:

R(s, a) =
n∑
i=1

P(state_fluent(xi)|Lp; s) U(xi) +∑
a∈A

P(action(a)|Lp; s) U(a).
(7)

Moreover, by the construction of value function nodes and the
transitivity of the dependence graph, we know that P(s′j |s, a)
equals the success probability P(_sj_|Lp; s, a), given by:

P(_sj_|Lp; s, a) = P(_sj_|x′1, ..., x′n)
n∏
i=1

P(x′i|Lp; s, a).

(8)
Additionally, by the definition of the utility attributes of value
function nodes, we verify that the expected future reward
over all next states represented by state variables x′1, ..., x

′
n

can be computed by
∑2n

j=1 P(_sj_|Lp; s, a) U(_sj_), where
U(_sj_) is conveniently set to γV (i)(sj).

Finally, combining Equations (7) and (8), we conclude that

V (i+1)(s) = maxa∈A

{
R(s, a) + γ

∑
s′∈S

P(s′|s, a)V (i)(s′)

}

= maxa∈A

{∑
U
riP(ui|Lp; s, a)

}
.

(9)

B. Solver

Our MDP-PROBLOG solver is implemented in Python3 and
freely available at a public repository.3 It solves the MDP prob-
lem using the built-in capabilities of PROBLOG as follows:

1) preprocessing: Each state_fluent gives rise to
propositional facts representing state variables later used
to set state evidence. Each action is translated to
a set of facts and rules that constrain the program to
disjointly consider only one action at a time. At this point,

3https://github.com/thiagopbueno/mdp-problog

all intentional rules are resolved and the implicit value
function nodes are attached to the program.

2) compilation: it performs the relevant grounding of the
augmented program with respect to the utility attributes
and converts the ground program into a formulae and then
compiles it to a specialized data structure used to solve
the inference task by weighted model counting [11].

3) value iteration: in each iteration it sets the evidence
of state s and runs the inference engine of PROBLOG
to compute the transition probabilities used during the
Bellman’s backup for each possible action. By means of
dynamic programming it approximates the value function
V (s) until ε-convergence.

In Algorithm 1 we outline the procedure that implements
value iteration over the MDP-PROBLOG representation. It
receives as inputs the program Lp, an initial value V (0) and
the discount factor γ and parameter ε for the convergence
test. It outputs the final approximation of value function V
and the optimal policy π. Note that in line 10 the weighted
model counting mechanism is invoked to compute the success
probabilities of all atoms with associated utilities and in line
19 the utility attribute of nodes sj are updated accordingly.

Algorithm 1: VI-MDP-PROBLOG(Lp, V
(0), γ, ε)

1 L′
p ← PREPROCESS(Lp), formulae← COMPILE(L′

p)

2 V ← V (0), π ← NIL
3 while true do
4 foreach val(x1, ..., xn) do
5 s← val(x1, ..., xn)
6 bestV alue← −∞, bestAction← NIL
7 foreach a ∈ A do
8 weights← EVIDENCE(s, a)
9 score← 0

10 foreach (ui, pi) ∈ EVAL(formulae, weights) do
11 score← score+ pi U(ui)
12 end
13 if bestV alue < score then
14 bestV alue← score, bestAction← a
15 end
16 end
17 error(s)← |bestV alue− V (s)|
18 V (s)← bestV alue, π(s)← bestAction
19 U(s)← γV (s)
20 end
21 if max(error) ≤ ε(1− γ)/(2γ) then
22 break
23 end
24 end
25 return V, π

IV. EXPERIMENTAL RESULTS

We tested our implementation in a 2.4 GHz Intel Core
i5 4GB RAM machine. Our goals with the experiments are
twofold: (i) to empirically validate the theoretic equivalence
between MDP-PROBLOG and Bellman’s backup for acyclic
and cyclic programs; and (ii) to establish a performance
baseline for future developments of our framework.

As to confirm the correctness of our implementation, we ran
MDP-PROBLOG on particular instances of the sysadmin

[13] problem with a star topology (i.e., all computers are
connected to a central computer), for which the optimal
solutions always involve trying to maximize the running time
of the central computer in the network, and therefore are
easy to manually check. Figure 8 shows an example of
the convergence of the VI-MDP-PROBLOG algorithm for a
simple problem used for validation.

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40

 0

 0.5

 1

 1.5

 2

 2.5

V
a
lu

e
 f
u
n
c
ti
o
n
 V

(s
)

M
a
x
 e

rr
o
r

Iteration

error
V(s0)
V(s1)
V(s2)
V(s3)
V(s4)
V(s5)
V(s6)
V(s7)

Fig. 8. VI-MDP-PROBLOG convergence for the sysadmin problem with
3 computers in a star topology. The problem has 8 states, but due to context-
sensitive independencies between state variables derived from the symmetry of
the network, 3 curves are overwritten and therefore only 5 curves are visible.

Additionally, we ran our current implementation against 4
different models of the viral marketing [12] problem.4

We used the same network over all models but change the
transition rules and state fluents to consider an increasing
complexity in the transition function. Models 2 and 4 handle
the atoms buys(P,0) as part of state representation and add
transitions that increases the chances of buying the product in
the next step if already bought it previously. Models 1 and 2
consider as valid actions only to market to single individuals
at a time. We report in Table I the execution times as well
as a problem characterization in terms of number of states,
number of actions and maximum number of calls to weight
model counting per state/action.

TABLE I
RESULTS FOR THE VIRAL MARKETING PROBLEM

model # states # actions # WMC total (s) per iter. (s)
1 16 5 24 0.788 0.019
2 256 5 264 95.686 2.225
3 16 16 36 7.683 0.183
4 256 16 276 585.061 13.297

V. RELATED WORK

Our approach relates to previous works on probabilistic
programming based on logic languages. The syntactical struc-
ture of our language as well as the inference mechanisms we
use come directly from PROBLOG [8]. However, by defining
special-purpose predicates and restricting the overall form of
programs to state distribution programs, we provide a more
clear semantics to represent and solve MDPs.

Moreover, in contrast to another decision-theoretic exten-
sion, namely DTPROBLOG [9], which only solves episodic

4All models are available in the public repository.

(i.e., one-shot) decision problems, our framework addresses
the task of sequential decision problems required to solve
MDPs. In principle, one can attempt to encode in DT-
PROBLOG, perhaps in a mixture of models, a sequential deci-
sion problem, but it is likely that it would be memory and/or
time-consuming to solve infinite-horizon MDPs directly using
its inference engine due to combinatorial explosion of state
and actions to consider simultaneously. Alternatively, other
direct extensions of PROBLOG to solve sequential decision
problems have been attempted. It is worthy to mention a
preliminary work [16] which attempts to solve MDPs by means
of parameter learning in an online planning setting. Yet, it
falls short from our approach since it disregards the reward
model and therefore does not find optimal policies for the
MDP. Another promising proposal of a probabilistic logic pro-
gramming system dedicated to solving MDPs uses the language
of Dynamic Distributional Clauses (DDC) [6]. This work is
much more general in the sense that its main objective is to
handle problems with uncountable domains involving mixtures
of discrete and continuous variables. In the restricted case of
boolean variables, one can easily verify the existence of an
homomorphism between DDC language and MDP-PROBLOG
(Section 4.2 [17]). Nevertheless, an important difference still
resides between the systems: DDC uses as its default inference
mechanism importance sampling and Monte-Carlo methods to
solve finite-horizon problems whereas MDP-PROBLOG uses
state-of-the-art weighted model counting techniques [11] to
solve infinite-horizon problems.

In a different perspective, MDP-PROBLOG radically dif-
fers from other representation formalisms such as Bayesian
networks for probabilistic modeling and PPDDL [2] and RDDL
[1] for probabilistic planning. In allowing to encode symmetric
and transitive probabilistic dependencies expressed by (strati-
fied) cyclic programs, MDP-PROBLOG is able to represent a
broader class of inference and planning problems.

VI. CONCLUSION

We presented a novel framework for representing and solv-
ing infinite-horizon MDPs by probabilistic programming. We
showed how to extend a probabilistic version of Prolog to
compactly represent the logical and probabilistic structure of
planning domains. In particular, our techniques are useful to
handle rich domains with symmetric and transitive probabilis-
tic dependencies between ground predicates that cannot be
modeled straightforwardly with traditional formalisms.

In this work, we only considered a simple value iteration
scheme for solving the MDP problem, nonetheless PROBLOG
also allows probabilistic sampling and parameter learning.
This can enable more sophisticated approaches such as Real-
Time Dynamic Programming (RTDP) [18] and planning as
inference using Expectation-Maximization (EM) [19].

On a rather different note, another very interesting possibil-
ity for future work is to allow more than one stable model
per induced logic program. This is in direct relation with
more expressive models such as MDP-ST problems [20] and
might trigger a considerable change in the language semantics.

Finally, one interesting idea we are currently investigating
is to use logical inference allowed by our underlying logic
mechanisms to reduce the space of policy search and to
accelerate the convergence of dynamic programming.

ACKNOWLEDGMENT

This work was partially supported by CNPq (grants
870666/1998-3, 308433/2014-9) and FAPESP (grants
2015/01587-0, 2016/01055-1).

REFERENCES

[1] S. Sanner, “Relational dynamic influence diagram language (RDDL):
Language description,” 2010, http://users.cecs.anu.edu.au/ ssan-
ner/IPPC 2011/RDDL.pdf.

[2] H. L. Younes and M. L. Littman, “PPDDL1.0: An extension to PPDDL for
expressing planning domains with probabilistic effects,” in Proceedings
of the 14th International Conference on Automated Planning and
Scheduling, 2004.

[3] T. Sato and Y. Kameya, “PRISM: a language for symbolic-statistical
modeling,” in IJCAI, vol. 97, 1997, pp. 1330–1339.

[4] D. Poole, “The independent choice logic and beyond,” in Probabilistic
inductive logic programming. Springer, 2008, pp. 222–243.

[5] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov,
“BLOG: Probabilistic models with unknown objects,” Statistical rela-
tional learning, p. 373, 2007.

[6] D. Nitti, V. Belle, and L. De Raedt, “Planning in discrete and continuous
markov decision processes by probabilistic programming,” in Machine
Learning and Knowledge Discovery in Databases. Springer, 2015, pp.
327–342.

[7] V. S. Costa, D. Page, M. Qazi, and J. Cussens, “CLP (BN): Constraint
logic programming for probabilistic knowledge,” in Proceedings of the
Nineteenth conference on Uncertainty in Artificial Intelligence. Morgan
Kaufmann Publishers Inc., 2002, pp. 517–524.

[8] L. De Raedt, A. Kimmig, and H. Toivonen, “PROBLOG: A probabilistic
prolog and its application in link discovery.” in IJCAI, vol. 7, 2007, pp.
2462–2467.

[9] G. Van den Broeck, I. Thon, M. Van Otterlo, and L. De Raedt,
“DTPROBLOG: A decision-theoretic probabilistic prolog,” in Proceed-
ings of the twenty-fourth AAAI conference on artificial intelligence.
AAAI Press, 2010, pp. 1217–1222.

[10] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[11] D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann,
I. Thon, G. Janssens, and L. De Raedt, “Inference and learning in
probabilistic logic programs using weighted boolean formulas,” Theory
and Practice of Logic Programming, vol. 15, no. 03, pp. 358–401, 2015.

[12] P. Domingos and M. Richardson, “Mining the network value of cus-
tomers,” in Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2001,
pp. 57–66.

[13] C. E. Guestrin, “Planning under uncertainty in complex structured
environments,” Ph.D. dissertation, Stanford University, 2003.

[14] T. Sato, “A statistical learning method for logic programs with distribu-
tion semantics,” in Proceedings of the 12th International Conference on
Logic Programming (ICLP’95. Citeseer, 1995.

[15] D. Poole, “Probabilistic programming languages: Independent choices
and deterministic systems,” Heuristics, probability and causality: A
tribute to Judea Pearl, pp. 253–269, 2010.

[16] I. Thon, B. Gutmann, and G. Van den Broeck, “Probabilistic program-
ming for planning problems,” 2010.

[17] L. De Raedt and A. Kimmig, “Probabilistic (logic) programming con-
cepts,” Machine Learning, vol. 100, no. 1, pp. 5–47, 2015.

[18] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using real-
time dynamic programming,” Artificial Intelligence, vol. 72, no. 1, pp.
81–138, 1995.

[19] M. Toussaint and A. Storkey, “Probabilistic inference for solving discrete
and continuous state markov decision processes,” in Proceedings of the
23rd international conference on Machine learning. ACM, 2006, pp.
945–952.

[20] F. W. Trevizan, F. G. Cozman, and L. N. D. Barros, “Planning under
risk and knightian uncertainty,” in IJCAI-07, 2007.

