
A Novel Context-Free Grammar to Guide the
Construction of Particle Swarm Optimization

Algorithms
Péricles B. C. Miranda and Ricardo B. C. Prudêncio

Universidade Federal de Pernambuco
Pernambuco, Recife

Abstract—Particle Swarm Optimization algorithm (PSO) has
been largely studied over the years due to its flexibility and
competitive results in different applications. Nevertheless, its
performance depends on different aspects of design (e.g., inertia
factor, velocity equation, topology). The task of deciding which
is the best algorithm design to solve a particular problem is
challenging due to the great number of possible variations
and parameters to take into account. This work proposes
a novel context-free grammar for Grammar-Guided Genetic
Programming (GGGP) algorithms to guide the construction of
Particle Swarm Optimizers. The proposed grammar addresses
four aspects of the PSO algorithm that may strongly influence
on its convergence: swarm initialization, neighborhood topology,
velocity update equation and mutation operator. To evaluate
this approach, a GGGP algorithm was set with the proposed
grammar and applied to optimize the PSO algorithm in 32 uncon-
strained continuous optimization problems. In the experiments,
we compared the designs generated considering the proposed
grammar with the designs produced by other grammars proposed
in the literature to automate PSO designs. The results obtained
by the proposed grammar were better than the counterparts.
Besides, we also compared the generated algorithms to state-
of-art algorithms. The results have shown that the algorithms
produced from the grammar achieved competitive results.

Index Terms—Particle Swarm Optimization; Genetic Program-
ming; Algorithm Generation;

I. INTRODUCTION

Particle Swarm Optimization (PSO) has been largely used
and studied over the years due to its flexibility and competitive
results in different applications [1]. Thus, various works have
been conducted to improve further the performance of the al-
gorithm [1]. Nonetheless, the PSO, as well as other algorithms,
has a set of parameters values that need to be adjusted ade-
quately. Otherwise, the algorithm performance can be harmed
[1]. In this paper, the problem of algorithm design for the
PSO is addressed. Our main goal is to determine an adequate
configuration of parameters and components (i.e., a design)
for the PSO algorithm regarding optimization performance
when applied to a given optimization problem. The literature
presents some previous works that performed empirical anal-
ysis on specific PSO parameters in isolation, which can be
useful in practice [2], [3]. Among these works, we highlight
the use of Grammar-Guided Genetic Programming algorithms
(GGGP) [4], which generate programs by using production
rules in a grammar definition. These algorithms are widely
used and studied due to their capacity of generating new

designs, instead of simply selecting designs from a pre-defined
limited search space [5]. Two works addressed the task of
designing PSO algorithms by using GGGP. The first deployed
a GGGP algorithm to generate only velocity equations, and
hence, it was not properly leveraged for automatic PSO design
[2]. Recent work proposed a richer grammar considering more
components of the PSO, such as topology, velocity equations,
mutation operators and population size [3]. Although the
results showed to be promising, the proposed grammar is
limited.

In this work, we propose a novel context-free grammar
to guide the construction of PSO algorithms. The proposed
grammar addresses four aspects of the PSO algorithm that may
strongly influence on its convergence: swarm initialization,
neighborhood topology, velocity update equation and mutation
operator. To evaluate this approach, a GGGP algorithm was
set with the proposed grammar and applied to optimize the
PSO design in 32 different continuous optimization functions
associated with four categories of problems. Each category
has different features and difficulty levels. In the experiments,
we compared the designs generated by using the proposed
grammar with the designs produced by other grammars defined
in the literature to automate PSO designs. The results obtained
by the proposed grammar were better than the counterparts.
We also compared the generated algorithms to state-of-the-
art algorithms. The results have shown that the algorithms
produced from the grammar achieved competitive results.
Finally, we investigated the components and parameter values
of the PSO algorithms generated considering the proposed
grammar for each category of problems.

This work is organized as follows. Section II presents
the basic concepts of PSO, focusing on the parameters and
components optimized in our proposal. Section III details
related work to optimization of PSO algorithms. Section IV
describes the proposed grammar in detail. Section V brings the
experimental methodology and presents the obtained results.
Finally, in Section VI, the conclusions are presented.

II. PARTICLE SWARM OPTIMIZATION

PSO is a well-succeeded optimization approach developed
by Kennedy and Eberhart [1]. Considering the standard PSO,
initially, a predefined number of particles are initialized ran-
domly in the search space. While a stopping criterion is not



reached, the particles update their velocity and position. Each
particle explores the search space guided by its velocity, which
is a combination between the best position found by itself
(pbest) and by the best position found by its neighborhood
(gbest) [1]. A new velocity is calculated by the following
equation:

~vi(t+ 1) = ~vi(t) + c1r1(~pi(t)− ~xi(t))+

c2r2(~gi(t)− ~xi(t)).
(1)

where i = 1, ..., N , N is the number of particles; ~vi(t)
is the current velocity; ~xi(t) is the current position; ~p(t)
and ~g(t) are the pbest and gbest respectively; c1 and c2
are the acceleration constants; r1 and r2 are two random
numbers between [0,1]. After updating the particle’s velocity,
the following equation is used to update the particle’s position:

~xi(t+ 1) = ~xi + ~vi(t+ 1). (2)

Different developments were proposed to the standard PSO
algorithm to improve its performance. Studies revealed that
some PSO components such as swarm initialization, neigh-
borhood topology, velocity update equation and mutation
operators may interfere on its convergence [6]. Next, some
developments are presented:

Initialization techniques: The swarm initialization is a
phase of PSO algorithm that is not commonly studied. How-
ever, the initialization can influence on PSO performance in
various problems [6]. In the case where particles are positioned
close to a global optimum, the algorithm can quickly converge
to a good solution in the search space. On the other hand,
if they start close to a local solution, the convergence may
be harmed. The most popular initialization technique is the
uniform random initialization because it treats each part of
the unrevealed search space equally [6]. However, different
initialization strategies have been proposed to improve the
evolution process. Among the initialization techniques, we
highlight the Nonlinear Simplex Model (NSM) [6] and Op-
position [7] which demonstrated to be useful.

Update velocity equations: A frequent phenomenon ob-
served in PSO algorithms that use the standard velocity
equation is the explosion of the particle’s velocity. By using
equation 1, the particles easily reach high-velocity values,
making the convergence process more difficult. Shi and Eber-
hart proposed the addition of the inertia weight ω to the
equation 1 of the standard PSO [1]. This weight can be a
positive constant or a positive linear or nonlinear function of
time [8]. As a consequence, the inertia weight controlled the
explosion of the velocity and balanced the exploration and
exploitation during the search. Another well-known variation
of the velocity equation was proposed by Clerc et al. [1], called
constriction factor. This proposal consists in the insertion of
the parameter χ, which is derived from the acceleration con-
stants, in the standard velocity equation. Besides the previous
equations, other velocity equations were proposed aiming to
improve the PSO performance [9], [10].

Neighborhood topology: It plays an important role in
the PSO convergence because the update velocity equation
depends on the knowledge acquired by the neighborhood. The
first developed topologies were the Star and Ring [1]. The star
is a fully-connected structure used to exploit the search space
in promising regions. The ring connects each particle only
with its direct neighbors, passing the information to the swarm
indirectly. Both topologies gave rise to the creation of several
other approaches that aimed to improve the search process. We
can classify them as static or dynamic topologies. In static
topologies, such as Star, Ring, Von-Neumann and Clan [1],
the neighbors of a certain particle never change during the
search process (i.e. the neighborhood structure is fixed) [11].
On the other hand, dynamic neighborhood allows the particles
to be in different groups at different times balancing the
particles’ move between exploration and exploitation. Among
the dynamic PSO variations already proposed, we highlight
Niche and Species [12], Clubs [13] and Cluster [14].

Mutation operators: PSO can find solutions faster than
other widespread search techniques like Genetic Algorithms
(GA) [15]. However, it can suffer from premature convergence
resulting in sub-optimal solutions, which can be a serious
limitation in case of highly multimodal problems with several
local optima [15]. Lack of population diversity in PSO can be
a reason for convergence to local minima [15]. A strategy
to improve diversity in a swarm is to include in the PSO
a mutation operator, as commonly adopted in evolutionary
algorithms. Several mutation operators can be seen in [15].

III. RELATED WORKS

Previous work has dealt with the task of PSO design as
another (meta)optimization problem [16], [17]. The search
space, in this case, is the set of possible designs for the
PSO on a problem. The objective function, in turn, is the
same one adopted in the (base)optimization problem at hand.
Different meta-heuristics, such as Differential Evolution (DE)
and GA, were applied to optimize PSO parameters (e.g., inertia
weight, acceleration constants) [16], [17]. Such optimization
techniques, however, are not adequate to evolve more complex
designs and also to exploit different combinations of PSO
components [5].

Genetic Programming (GP) is an evolutionary approach
which has potential advantages for algorithm design since it
is flexible to represent and evolve more complex and flexible
designs [5]. One of the most used GP approaches for the
context of algorithm design is the GGGP algorithm, a GP
approach guided by a grammar [5]. There are two reasons
to combine GP with grammars [5]. First, the grammar incor-
porates prior knowledge about the problem domain helping
to guide the GP search. Second, the production rules ensure
syntactic correctness of the generated programs, differently
from the traditional GP and GA. Different types of GGGP
algorithms were proposed, such as Context-free Grammar
Genetic Programming (CFG-GP) [5], Grammatical Evolution
(GE) [5] and Logic grammar-based genetic programming
(LOGENPRO) [18]. Nonetheless, GE has become the most



broadly used extension of the GGGP system in the context of
PSO [2]. Si et al. [2] adopted a GE algorithm to generate new
velocity equations. However, the potential advantages of GE
were not properly leveraged, since it was limited to evolve
velocity updating equations. Other issues of PSO (e.g., the
topology adopted) were not considered in this work. On the
other hand, recent work, developed by Miranda and Prudêncio
[3], used a GE algorithm with a richer grammar considering
more components of the PSO. The neighborhood topology,
mutation operators, velocity equations and population size
were considered. Although the results showed to be promising,
the proposed grammar is limited, since it considered standard
static topologies (no dynamic topologies) and only two possi-
ble velocity equations.

IV. PROPOSAL

As previously mentioned, few studies have applied GGGP in
the PSO optimization and, moreover, the developed grammars
considered a limited set of PSO parameters and components.
In this work, we present a novel context-free grammar to guide
the construction of PSO algorithms. Differently of previous
works which used few and standard components to design the
PSO, the proposed grammar was set with a complete set of
modern and sophisticated components to build PSO algorithms
with what is best already developed in the literature. We
highlight that the proposed grammar follows the BNF format
and can be used in any GGGP approach which adopts context-
free grammar for algorithm generation.

To build a diverse and useful number of designs for the PSO,
the grammar considers four aspects of the PSO algorithm that
may strongly influence its performance. Algorithm 1 shows
the parameters and components of the PSO algorithm to be
optimized. The items in the format of tag <> correspond
to the parameters or components that can be replaced by
values defined in the grammar. Next, we present these aspects
specified in the grammar (see Figure 1) with their optional
values:

Initialization: the tag <INITIALIZATION> represents the
strategy to initialize the swarm. We considered here three
initialization methods: the traditional random uniform using
Sobol sequences, NSM [6] and Opposition [7]. These initial-
ization strategies were cited in Section II. We highlight that
no previous work adopted the initialization in the optimization
of PSO algorithms.

Velocity update: the tag <UPDATE-VELOCITY> represents
the velocity equation to update particles’ velocity. The pro-
posed grammar can produce a variety of equations to combine
the cognitive and social information (variables gbest and
pbest). The standard velocity equations presented in Section II
are just special cases that can be derived from this grammar.
The ω uses the linear decreasing strategy [8] and χ = 0.7
(constriction factor) can be eventually adopted to control the
particles’ velocity.

Neighborhood topology: the tag <TOPOLOGY> corresponds
to the topology mechanism that supplies the neighborhood po-
sitions for the velocity equation. Due to the rich PSO literature,

choosing a set of relevant neighborhood topologies proved
to be tough. Considering as criteria the inspiration source,
the performance, and theoretical properties, the number of
reported applications and the potential for further development
and improvements, we selected seven neighborhood topologies
from the literature: Star, Ring, Niche, Clubs, Cluster, Species
and Dynamic Ring.

Mutation: Finally, possible mutation operators for the PSO
are represented by the tag <MUTATION>. Five mutation opera-
tors, suggested by [15], can be assigned to this tag. Moreover,
we also considered the case where the PSO does not use
any mutation operator (the tag assumes the value λ). The
tag <PROB-MUTATION>, in turn, defines the possible values of
mutation probability.

It is worth mentioning that each PSO was run with a
population size equals to 30 and the constant r, from tag
<VAR>, assumes a value within 0 and 1. As it can be seen,
the tags <INITIALIZATION>, <TOPOLOGY>, <MUTATION>, and
<PROB-MUTATION> can be exchanged by terminals directly.
In other words, it works as a selection of parameter values.
However, the tag <UPDATE-VELOCITY> can generate different
velocity equations with different formats and components.

Algorithm 1: PSO algorithm to be optimized.
swarm size = 30
swarm = <INITIALIZATION>(swarm size)

evaluate fitness(swarm)

topology = <TOPOLOGY>

1: while !stop criterion do
<UPDATE-VELOCITY>(swarm, topology)

update position(swarm, topology)

<MUTATION>(swarm)

update fitness(swarm)

update pbest(swarm)

update gbest(swarm, topology)
end

V. EXPERIMENTS AND RESULTS

To evaluate the proposed approach, it was necessary to
choose a GGGP algorithm to use the grammar. Thus, we chose
the GE algorithm and incorporated the proposed grammar on it
to optimize the PSO design (we call GEnew). The experiments
were divided into three phases. First, we compared the designs
produced by the GEnew to the designs generated by GE using
two other grammars already used for PSO algorithm design.
Here, we considered the grammar developed by Miranda and
Prudêncio [3] (we call GE1) and the grammar created by Si
et al. [2] (we call GE2). Second, we compared the algorithms
produced by the GEnew to the algorithms adopted in the com-
petition of the International Conference of Swarm Intelligence
2014 (ICSI 2014) [19], considering the same set of problems.
Our goal is to verify whether the generated algorithms achieve
competitive results in comparison to consolidated algorithms.
Finally, we investigated the components and parameter values



Fig. 1. Proposed BNF grammar for PSO optimization.

of the PSO algorithms produced by the GEnew for each cate-
gory of problems. All approaches were evaluated considering
a set of 32 unconstrained continuous optimization problems.
All the functions are scalable and adopted 30 dimensions. The
adopted functions can be classified in four categories: Bowl-
Shaped, Plate Shaped, Valley-Shaped and Many Local Minima,
allowing us to evaluate the approach proposed in different
perspectives and levels of difficulty [20].

The Bowl-Shaped category presents functions with a convex
fitness landscape and only one global minimum solution.
The eight problems in this category are: Sphere (f1), Sum
of Different Powers (f2), Sum Squares (f3), Rotated Hyper-
Ellipsoid (f4), Axis parallel hyper-ellipsoid (f5), Brown (f6),
Exponential (f7) and Schwefel01 (f8). The Plate-Shaped and
Valley-Shaped category are composed by functions which have
the global optimum located in an uniform plain. As the global
minimum is located in the plain, the task of finding it can be-
come difficult. The functions which belong to these categories
are, respectively: Zakharov (f9), Bent Cigar (f10), Elliptic
(f11), Discus (f12), AMGM (f13), Rotated High Conditioned
Elliptic (f14), Rotated Bent Cigar (f15) and Rotated Discus
(f16); and Rosenbrock (f17), Shifted Rosenbrock (f18), Shifted
and rotated Rosenbrock (f19), Dixon-Price (f20), Schwefel04
(f21), Rotated Dixon-Price (f22), Shifted Dixon-Price (f23)
and Shifted and rotated Dixon-Price (f24). Functions with
multiple local minima are in the Many Local Minima category.
These problems can trap optimization algorithms in a local
minimum, turning the search more difficult. The functions in
this category are Ackley (f25), Griewank (f26), Rastrigin (f27),
Alpine (f28), Salomon (f29), Shifted Ackley (f30), Shifted and
rotated Griewank (f31) and Shifted rastrigin (f32).

TABLE I
GE PARAMETERS.

Parameter Value
Population size 50
Number of generations 20
Crossover probability (LHS crossover) 0.8
Point mutation probability 0.01
Chromosome length 30
Selection mechanism Roulette Wheel
Generation model Steady state

It is noteworthy that the competition algorithms, GE1 and
GE2 used the same setting values adopted by the PSO algo-
rithms. In other words, the stop criterion is 5, 000 iterations per
simulation and all algorithms executed 20 times to generate
the mean of its fitness values.

A. Comparing grammars

This experiment compared the designs produced by GEnew

to the designs produced by the GE using previous grammars.
The GE set with each grammar followed the same criterion of
execution in this experiment: each PSO generated is executed
(stop criterion is 5, 000 iterations) and the pbest’s fitness of
the best particle is stored. To guarantee reliability, each PSO
is executed 20 times, and the average fitness value is returned
as the fitness of that design. Once the GE algorithm’s stop
criterion (20 generations) is reached, the best design found
over all generations is returned as output. The parameter
values of GE are listed in Table I. It is worth to mention that
the experiments were performed on an Intel Core i7-5600U
processor with 4M Cache, up to 3.20 GHz.

Table II shows an analysis performing a comparison be-
tween the GEnew and the other GGGP approaches for each
problem. As it can be seen on this table, the fitness values
achieved by the algorithms generated by GEnew overcame,
statistically, the GE1 results in 19 out of 32 problems. The
remaining 13 problems, the results of both approaches were
statistically equal. Regarding GE2, the results obtained by the
GEnew were even more impressive. The GE2 was overcome by
the GEnew in 27 out of the 32 problems, and the results of both
approaches in the five remaining problems were considered
statistically equal.

B. ICSI algorithms

Here, the goal is to investigate whether the algorithms
generated by the GEnew can reach competitive results. Thus,
this experiment compares the algorithms generated by the
GEnew with the algorithms from the ICSI 2014 competition:
HSDB (A1), MPCPSO (A2), MBO (A3), dynFWA (A4),
DESP (A5) and EFWA (A6). We highlight that all algorithms
from A1 to A6 adopted their default parameters used in the
competition.

The experiment performed compares the average fitness
values achieved by the algorithms for each problem. In order
to compare all algorithms against each other, we performed an



TABLE II
MEAN OF FITNESS VALUES OF THE ALGORITHMS GEnew , GE1 AND GE2

IN EACH OPTIMIZATION PROBLEM.

Category Problems Algorithms
GEnew GE1 GE2

Bowl

f1 1.46e-148 1.41e-128 H 2.36e-118 H
f2 2.52e-73 2.34e-70 1.64e-64
f3 3.04e-127 3.14e-97 H 4.84e-64 H
f4 2.13e-138 2.13e-98 H 1.42e-73 H
f5 2.36e-144 1.16e-119 H 2.19e-119 H
f6 1.34e-31 2.31e-25 1.31e-18 H
f7 2.14e-135 4.47e-128 1.45e-123
f8 2.23e-29 2.86e-21 3.52e-19

Plate

f9 1.02e-4 0.09 H 3.15 H
f10 1.34e-28 1.84e-15 H 0.34 H
f11 2.15 2.41 9.16 H
f12 2.13e-15 0.63 H 3.23 H
f13 1.2e-57 5.34e-22 H 5.34e-04 H
f14 3.21 5.92 H 10.72 H
f15 1.22e-21 3.32e-14 H 1.32e-04 H
f16 1.37e-19 4.31e-12 4.0e-05

Valley

f17 2.79 5.41 H 15.21 H
f18 6.54 8.12 H 12.11 H
f19 8.25 11.55 H 20.75 H
f20 0.44 0.51 2.19
f21 2.42e-19 4.51e-14 0.023 H
f22 0.49 0.67 6.18 H
f23 0.61 2.73 H 6.17 H
f24 0.615 2.72 H 7.36 H

Many

f25 2.14e-9 1.95e-4 11.15 H
f26 0.0 0.0 11.83 H
f27 2.96 6.21 H 14.97 H
f28 2.81e-23 1.57e-17 10.17 H
f29 0.31 2.42 H 16.18 H
f30 1.79e-12 0.475 H 15.42 H
f31 0.0 0.0 12.62 H
f32 3.52 6.21 H 17.27 H

experiment which ranks all algorithms across all problems (for
each problem, rank = 1 is assigned to the best algorithm, rank
= 2 is assigned to the second best, and so on). The GEnew

achieved the fourth best place in the rank from all algorithms.
Aiming to verify which algorithms were overcome statistically
by the GEnew, we applied the Wilcoxon signed-rank test. With
this, we could see that the GEnew is statistically equivalent to
A2, A5 and A6, and statistically better than A1 and A3.

In addition, we also carried out a deeper analysis perform-
ing a comparison between the GEnew and the competition
algorithms. For this, the average fitness value achieved by the
best-competing algorithm from ICSI 2014 and by GEnew were
compared considering each problem. According to the col-
lected results, the GEnew generated algorithms which achieved
fitness values close to the global optimum for all problems.
To verify whether these results are competitive in comparison
to the best algorithm, we applied the Wilcoxon statistical
test. The achieved fitness values were considered statistically
identical to the results of the best algorithm for each problem.
The comparative results considering the competition algo-
rithms should not be considered in an absolute sense because
the competition algorithms were executed using their default
parameters, whereas the PSO algorithms were optimized by
the GEnew. In this sense, the comparison would be unfair. Our

TABLE III
RESULTING DESIGNS PER CATEGORY OF PROBLEMS.

Category Parameter values
INITIAL. MUTATION PROB-MUT. TOPOLOGY

Bowl Random (68.5%) Random (38%) 0.2 (41%) Star (58%)
Plate Opposit. (50%) Random (32%) 0.2 (34.5%) Niche (28%)
Valley Opposit. (51%) Gauss. (31%) 0.2 (31.5%) Niche (32%)
Many NSM (47%) Gauss. (33%) 0.4 (39%) Species (31%)

intention performing this experiment was to verify whether
the GEnew can generate adequate PSO algorithms for the
considered optimization problems.

C. Analysis of PSO designs

In this section, we investigate the components and parameter
values used by the generated PSO algorithms. To perform
this battery of experiments, we stored, for each problem, the
GEnew’s output designs and identified the most used compo-
nents and parameter values across all runs and generations
of the GE. Table III presents the resulting designs obtained
for each category of problems. This table also shows the
percentage of times that the resulting parameter values were
used in PSO designs during the simulations.

As it can be seen, although the Uniform Random initializa-
tion is the most used strategy in literature, the Opposite and
NSM showed to be useful for problems in the Plate, Valley and
Many Local Minima categories. Considering the <MUTATION>

parameter, the Gaussian and Random strategy were selected as
the resulting mutation operators, and they were also the most
used across the categories. The appearance of the mutation
operator in the designs represents that they can be useful
for the PSO results. Considering the <TOPOLOGY> parameter,
we can see that the topology choice depends strongly on
the problem difficulty. Differently from the other parameters,
whose values were robust, the <TOPOLOGY> choices presented
variations according to the category of the problem. It can be
seen that the Star was the most adequate topology for problems
in the Bowl category. Problems which belongs to this category
are considered easier to be optimized, thus, topologies which
favor exploitation would be more suitable. The problems in the
Plate category, differently from the Bowl category, need more
exploratory topologies to avoid stagnation in the plain. Thus,
the Niche, Clubs and Species topologies were commonly used
during the search. Similarly to the Plate category, problems
which belong to the Valley category also used the Niche
topology. Regarding the Many Local Minima category, more
sophisticated topologies were massively applied in the PSO
algorithms. The topologies Niche and Species were adopted in
more than 60% of designs. This result can be explained due
to the existence of mechanisms that provide a good balance
between exploitation and exploration.

Next, examples of the generated velocity equations for the
PSO algorithms are presented. Considering the Bowl-shaped
category, the generated equation for the optimization problem
f1 is χ∗ (~vi+[~gi−r1 ∗~xi]−~vi ∗r2). This equation is suitable



to operate on unimodal objective functions because it has a
100% social component and a random friction component.
As the Star topology was adopted in the generated design
for f1, it makes the convergence to the global optimum
faster. Regarding to the Plate-shaped category, the generated
equation for f9 is χ∗ (~vi+[~gi−r1 ∗~xi]+r2 ∗~gi ∗~xi−r3 ∗~vi),
and it has three components. The first component, [~gi−r1∗~xi],
gives a greater weight to the social aspect. When the second
component, r2 ∗ ~gi ∗ ~xi, is near from zero it means that the
current particle’s position is close to the best social position.
When this component is non-zero, it tends either to slow or
to accelerate the motion of the particles, according to the
positions of the current position and the position of the swarm
best. Finally, r3 ∗ ~vi is a random friction component. It is
worth to mention that the Niche topology was used in the
generated design for f9. The combination of the generated
equation with the selected topology made the resulting algo-
rithm able to balance exploration and exploitation. Considering
the Valley-shaped category, the generated equation for f17 is
χ ∗ (~vi + r1 ∗ [~gi − ~xi] + r2 ∗ [~pi − ~xi]− r3 ∗ ~vi), and it has a
similar structure when compared to the constricted equation.
This equation considers the particle’s social and cognitive
information. As the resulting algorithm for the problem f17
also used the Niche topology, the combination of both equation
and topology favored the balancing between exploration and
exploitation. The generated equation for f25 (Many category)
is χ∗(~vi+r1∗[~gi−~xi]−r2∗r3∗~xi∗~g2i ). As it can be seen, the
particle’s best information is not used in the equation, probably
because, in a highly multimodal landscape, particles should
not trust their observations too much. The second component
tends to push the particles towards the origin unless the swarm
best is near the origin. When this component is non-zero, it
can slow or accelerate the motion of the particles, according
to the positions of the current position and the position of
the swarm best. Besides, the Species topology was adopted
for f25, and it helped the generated PSO algorithm to have a
good performance on the problem at hand.

VI. CONCLUSION

This paper addresses the problem of algorithm design for
the PSO. Our goal is to produce a PSO algorithm that is
adequate for a given problem regarding optimization perfor-
mance. Thus, we proposed a novel context-free grammar for
Grammar-Guided Genetic Programming algorithms to guide
the construction of PSO algorithms. The proposed grammar
considers four aspects of the PSO algorithm that may strongly
influence on its convergence: swarm initialization, neighbor-
hood topology, velocity update equation and mutation operator.

To evaluate this approach, a GGGP algorithm was set with
the proposed grammar and applied to optimize the PSO algo-
rithm in 32 unconstrained continuous optimization problems.
In the experiments, we compared the designs generated by
using the proposed grammar with the designs produced by
other grammars defined in the literature to automate PSO
designs. The results obtained by the proposed grammar were
better than the counterparts. Besides, we also compared the

algorithms generated by state-of-art algorithms. The results
have shown that the algorithms produced from the grammar
achieved competitive results.

ACKNOWLEDGMENT

The authors would like to thank CNPq, CAPES and
FACEPE (Brazilian Agencies) for their financial support.

REFERENCES

[1] A. P. Engelbrecht, Computational intelligence: an introduction. John
Wiley & Sons, 2007.

[2] T. Si, A. De, and A. K. Bhattacharjee, “Grammatical swarm based-
adaptable velocity update equations in particle swarm optimizer,” in
International Conference on Frontiers of Intelligent Computing: Theory
and Applications (FICTA) 2013. Springer, 2014, pp. 197–206.

[3] P. B. Miranda and R. B. Prudêncio, “Gefpso: A framework for pso
optimization based on grammatical evolution,” in Proceedings of the
2015 on Genetic and Evolutionary Computation Conference. ACM,
2015, pp. 1087–1094.

[4] R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’Neill,
“Grammar-based genetic programming: a survey,” Genetic Programming
and Evolvable Machines, vol. 11, no. 3-4, pp. 365–396, 2010.

[5] P. A. Whigham et al., “Grammatically-based genetic programming,” in
Workshop on genetic programming: from theory to real-world applica-
tions, vol. 16. Citeseer, 1995, pp. 33–41.

[6] K. E. Parsopoulos, Particle Swarm Optimization and Intelligence: Ad-
vances and Applications: Advances and Applications. IGI Global, 2010.

[7] H. Jabeen, Z. Jalil, and A. R. Baig, “Opposition based initialization
in particle swarm optimization (o-pso),” in 11th Annual Conference
Companion on Genetic and Evolutionary Computation Conference: Late
Breaking Papers. ACM, 2009, pp. 2047–2052.

[8] J. Xin, G. Chen, and Y. Hai, “A particle swarm optimizer with multi-
stage linearly-decreasing inertia weight,” in Computational Sciences
and Optimization, 2009. CSO 2009. International Joint Conference on,
vol. 1. IEEE, 2009, pp. 505–508.

[9] Z. Xinchao, “A perturbed particle swarm algorithm for numerical
optimization,” Applied Soft Computing, vol. 10, no. 1, pp. 119–124,
2010.

[10] M. M. El-Sherbiny, “Particle swarm inspired optimization algorithm
without velocity equation,” Egyptian Informatics Journal, vol. 12, no. 1,
pp. 1–8, 2011.

[11] Y.-X. Wang and Q.-L. Xiang, “Particle swarms with dynamic ring topol-
ogy,” in IEEE Congress on Evolutionary Computation, 2008. IEEE,
2008, pp. 419–423.

[12] R. Brits, A. P. Engelbrecht, and F. Van den Bergh, “A niching particle
swarm optimizer,” in 4th Asia-Pacific conference on simulated evolution
and learning, vol. 2. Singapore: Orchid Country Club, 2002, pp. 692–
696.

[13] W. Elshamy, H. M. Emara, and A. Bahgat, “Clubs-based particle swarm
optimization,” in Swarm Intelligence Symposium, 2007. SIS 2007. IEEE.
IEEE, 2007, pp. 289–296.

[14] A. Passaro and A. Starita, “Particle swarm optimization for multimodal
functions: a clustering approach,” Journal of Artificial Evolution and
Applications, vol. 2008, p. 8, 2008.

[15] C. Li, S. Yang, and I. Korejo, “An adaptive mutation operator for particle
swarm optimization,” in UK Workshop on Computational Intelligence,
2008. IEEE, 2008, pp. 165–170.

[16] K. E. Parsopoulos and M. N. Vrahatis, “Recent approaches to global
optimization problems through particle swarm optimization,” Natural
computing, vol. 1, no. 2-3, pp. 235–306, 2002.

[17] W.-J. Zhang, X.-F. Xie et al., “Depso: hybrid particle swarm with
differential evolution operator,” in IEEE International Conference on
Systems Man and Cybernetics, vol. 4, 2003, pp. 3816–3821.

[18] M. L. Wong and K. S. Leung, “Evolutionary program induction directed
by logic grammars,” Evolutionary Computation, vol. 5, no. 2, pp. 143–
180, 1997.

[19] Y. Tan, J. Li, and Z. Zheng, “Introduction and ranking results of the
icsi 2014 competition on single objective optimization,” arXiv preprint
arXiv:1501.02128, 2015.

[20] S. Surjanovic and D. Bingham, “Virtual library of simulation experi-
ments: test functions and datasets,” Retrieved December, vol. 4, p. 2014,
2014.


